
An Improved Clock-Aware Global Placement
Algorithm

Ziang Ge and Pingqiang Zhou
School of Information Science and Technology
Shanghaitech University, Shanghai, P. R. China

{geza2022, zhoupq}@shanghaitech.edu.cn

Abstract—Traditional very-large-scale integrated (VLSI) cir-
cuits physical design flows that optimize clock networks after
placement are limited by the quality of register placement.
Prior research on clock-aware placement shows effectiveness in
minimizing clock-net wirelength during placement but suffers
from large runtime overhead due to iterative clock-tree con-
struction process. In this paper, we propose to accelerate clock-
aware placement with a fast clock-tree synthesis method and
a preconditioner for clock wirelength gradient. Experimental
results show that the proposed method can save 30% runtime
over prior work with only 1% placement quality degradation.

Index Terms—Placement, clock-network synthesis, nonlinear
optimization, low power.

I. INTRODUCTION

Due to their frequent switching and large capacitance,
clock networks often account for over 30% of total power
consumption in synchronous sequential designs [1]. Total
wirelength is a critical optimization objective in clock network
synthesis, since larger clock wirelength results in greater clock
capacitance and thus require more power for distribution of
clock signals [2].

Fig. 1 illustrates the steps of VLSI physical design. Clock
network synthesis is usually performed after placement, which
determines the locations of the sequential logics such as
registers. Considering that the quality of synthesized clock
network is greatly affected by register locations, such design
flow limits the design space for clock network synthesis. To
overcome such limitation, previous works propose to optimize
the total switching power of clock networks by minimizing
clock wirelength during placement stage [1], [4], [5]. This is
achieved by adding additional force on registers during global
placement. The direction of the additional force is estimated
by constructing a virtual clock-tree at each global placement
iteration. However, the runtime overhead for iterative virtual
clock-tree construction become non-negligible over the many
iterations of global placement. [5] proposes a grid-based algo-
rithm to accelerate DME-based virtual clock-tree construction,
at the cost of a 20% runtime overhead.

To further accelerate clock-aware global placement, we ap-
ply a much faster clock-tree synthesis method for virtual clock-
tree construction. The key insight is that the purpose of virtual
clock-tree construction is to estimate the direction of force

This work was supported in part by the National Natural Science Foundation
of China under the Grant No. 62074100.

Fig. 1. VLSI physical design flow [3].

to pull registers together, rather than obtaining a high-quality
clock-tree. Thus, we can sacrifice virtual clock-tree quality
for lower runtime. Furthermore, for the first time, we propose
a preconditioner for clock wirelength gradient to balance the
optimization of clock-net wirelength and signal wirelength.
The proposed technique is integrated into ePlace [6]. Exper-
imental results on eight CLKISPD’05 benchmarks [1] show
that, compared to the state-of-the-art clock-aware placement
algorithm [5], our methods can reduce the runtime of clock-
aware global placement by 30% on average.

II. RELATED WORKS

In this section, we present an overview of the state-of-the-
art clock-aware global placement algorithm [5]. RePlAce [7] is
chosen as the placement backbone, in which the global place-
ment problem is formulated as an unconstrained optimization
problem

min
v

f(v) = W (v) + �N(v) (1)

979-8-3503-6183-4/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 1
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
ol

id
-S

ta
te

 &
 In

te
gr

at
ed

 C
irc

ui
t T

ec
hn

ol
og

y
(IC

SI
CT

) |
 9

79
-8

-3
50

3-
61

83
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SI

CT
62

04
9.

20
24

.1
08

31
27

7

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 05:04:27 UTC from IEEE Xplore. Restrictions apply.

where v = (x,y)T = (x1, . . . , xn, y1, . . . , yn)
T denotes

a solution to accommodate all n objects and W (v) is the
wirelength function. N(v) is the density function, which is
modeled by eDensity [6], and � is the penalty factor for
adjusting the ratio between wirelength and density.

[5] extends the original optimization problem to consider
clock-tree wirelength and the new objective function is defined
as

f(v) = Wu(v) + ⌘Wc(v) + �N(v) (2)

where Wu(v) denotes signal-net wirelength and Wc(v) is
the clock-net wirelength. ⌘ is the weight used to scale the
clock-net wirelength. The nonlinear optimization problem in
Eq. (2) is then solved using Nesterov’s method [6]. Solving
such problem using Nesterov’s method involves efficiently
computing the gradient function. The gradient function f(v)
over one variable xi can be derived as

@f(v)

@xi
=

@Wu(v)

@xi
+ ⌘

@Wc(v)

@xi
+ �

@N(v)

@xi
(3)

where the density gradient is computed using fast Fourier
transform (FFT) [6]. The gradient of signal-net wirelength is
obtained by differentiating the WA wirelength model [8]. The
weight ⌘ is used to explore the optimization tradeoff between
signal-net wirelength and clock-net wirelength. It should be
noted that in the practice of nonlinear optimization, the gra-
dient vector rf is often multiplied by a preconditioner [6] to
accelerate its convergence process.

Since the existing wirelength models for signal-nets do
not offer accurate estimation of clock-net wirelength [1], to
obtain the gradient of clock-net wirelength, a virtual clock-
tree is constructed at each global placement iteration. Then the
gradient of clock-net wirelength for each register is estimated
by accumulating gradients along the clock-tree. Specifically,
the constructed virtual clock-tree is decomposed into a set
of two-pin pseudo-nets and the clock-net gradient on leaf
nodes (registers) is estimated by accumulating the wirelength
gradients of the two-pin nets along each root-to-leaf path.
Thus, the clock-net gradient function is defined as

@Wc(v)

@xi
=
X

tj2T
wlj

@Wtj (v)

@xi
(4)

where T is the set of all two-pin pseudo-nets from a register
ri to the root, and wlj denotes the weight of gradient of level
lj at which the two-pin pseudo-net tj is located in the clock-
tree. Fig. 2 gives an example of arboreal clock-net gradient.

The runtime overhead of constructing the virtual clock-
tree using nearest-neighbor graph (NNG) and deferred-merge
embedding (DME) at every global placement iteration can
be significant. For example, the complexity of naive NNG
construction is O

�
n
3
�

for n registers. Therefore, a grid-
based algorithm for NNG construction is proposed in [5]
to accelerate virtual clock-tree construction. The NNG has a
time complexity of O

�
n
2 log n+ k

2
n
�
, where k is the average

number of sinks in a grid.

Fig. 2. Arboreal gradient accumulation in [5].

III. METHODOLOGY

Although the grid-based algorithm can accelerate virtual
clock-tree construction, its runtime overhead is still non-
negligible (20% as reported in [5]). More importantly, the
effort to build a well-optimized virtual clock-tree with NNG
and DME algorithm can be wasteful, because

• DME-based algorithm tries to minimize clock skew while
our work targets the minimization of clock-tree wire-
length.

• In each iteration of global placement, previous virtual
clock-tree is discarded and a new one is built from
scratch with updated register locations. Therefore, over-
optimizing a virtual clock-tree with current register loca-
tions can be meaningless especially during the early stage
of global placement, when the registers are far from their
final positions.

For efficient and effective virtual clock-tree construction, we
propose to replace NNG and DME with the method of means
and medians (MMM) [9], which is much faster and adequately
effective to guide the movement of registers.

A. Virtual Clock-Tree Construction with MMM

We adopt ePlace [6] as our placement backbone and use
the objective function defined in Eq. (2). We apply the MMM
algorithm to construct a virtual clock-tree with current register
locations in one global placement iteration and follow the
arboreal clock-net gradient accumulation to obtain clock-net
wirelength gradient. The overall computation flow is shown in
Fig. 3. MMM is a classic algorithm for clock-tree synthesis.
It recursively partitions the set of sinks (registers) into two
subsets of equal cardinality (median). Then, the center of
mass of the set is connected to the centers of mass of
the two subsets (mean). The MMM algorithm has a time
complexity of only O (n log n). Notice that the effectiveness of
MMM depends heavily on the choice of partition directions
for median computation, in this work, we alternate the cut
direction during a single MMM run because all benchmark
circuits we use in this work have an approximate square shape.
The main drawback of MMM is that it only minimizes clock
skew heuristically. But this is acceptable because we only need
to optimize clock wirelength during global placement.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 05:04:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Overall flow of our algorithm.

The strategy for adjusting ⌘ in [5] is adopted and ⌘ is defined
as

⌘ = k1e
k2(k3�⌧) (5)

where k1, k2, k3 are chosen to be 6, 10, 0.1 respectively in our
experiments, and ⌧ is the global density overflow, which is
defined as the total overflow area in all placement bins over
the area of total movable blocks [10] and it usually starts
from around 1.0 and ends with 0.1. We observe that ⌘ is very
small during early stage of global placement (when the global
density overflow is fairly high) and ⌘

@Wc(v)
@xi

is thus close to
0. Therefore, we only conduct virtual clock-tree construction
when ⌧ < 0.6 and clock-net gradient is set to 0 when ⌧ � 0.6.

The weight of gradient at level i is calculated as

wli =
1p
2⇡�

e

✓
� l2i

2�2

◆

(6)

where li is defined as

li = 3

✓
1� i

Lt

◆
(7)

Here Lt is the total level count of the clock-tree. We follow
[5] for the definition of � in Eq. (6)

� = p� 1

e⌧+q
(8)

where p and q are set to 10.35 and -1.68 respectively.

B. Clock-Net Wirelength Preconditioner

Preconditioning helps reduce the condition number of a
problem and has been verified to be effective for accelerating
the nonlinear global placement [6]. Signal wirelength precon-
ditioner and density preconditioner have been used in [6] for
signal wirelength optimization.

In this work, we propose a clock-net wirelength precondi-
tioner to 1) speed up the convergence of clock-net wirelength
optimization, and 2) relieve the imbalance between object

gradients in Eq. (3). We approximate Hf of Eq. (2) to be
a positive definite diagonal matrix eHf

Hf ⇡ eHf =

eHfx,x 0

0 eHfy,y

!
(9)

where

eHfx,x =

0

BBBBB@

@2f
@x2

1
0 · · · 0

0 @2f
@x2

2
· · · 0

...
...

. . .
...

0 0 · · · @2f
@x2

n

1

CCCCCA
(10)

is the x part of the precondioner, and the y part eHfy,y can
be expressed in a similar way. Then we use eHf as the
preconditioner and calculate rfpre = eH�1

f rf in nonlinear
optimization.

To obtain eHfx,x , according to Eq. (2), we have

@
2
f(v)

@x2
i

=
@
2
Wu(v)

@x2
i

+ ⌘
@
2
Wc(v)

@x2
i

+ �
@
2
N(v)

@x2
i

(11)

We then need to compute or estimate @
2
Wu(v)/@x2

i ,
@
2
Wc(v)/@x2

i and @
2
N(v)/@x2

i separately. The readers are
referred to [6] for the estimations of the terms @

2
Wu(v)/@x2

i

and @
2
N(v)/@x2

i . For the second term @
2
Wc(v)/@x2

i , after
differentiating Eq. (4) with respect to xi, we can get the
second-order gradient of the clock-net wirelength function as

@
2
Wc(v)

@x2
i

=
X

tj2T
wlj

@
2
Wtj (v)

@x2
i

(12)

Here we use the degree of two-pin pseudo-nets, 2, as the
estimation of @2

Wtj (v)/@x
2
i , so we get

@
2
Wc(v)

@x2
i

= 2
X

tj2T
wlj (13)

IV. EXPERIMENTAL RESULTS

Our algorithm is implemented in C++ and ran on a Linux
machine with Intel i7 12700 2.1GHz CPU and 16GB memory.
We conduct experiments on the CLKISPD’05 benchmarks [1],
which include register lists generated based on the ISPD2005
benchmarks [11]. 15% of standard cells are selected to be
registers in each benchmark. Table II shows the details of the
benchmarks.

For fair comparison, we implement the algorithm [5] in C++
and run on the same machine. Notice that although RePlAce
is chosen as the placement backbone in [5], it shares the
core algorithm with ePlace. Therefore we choose ePlace as
the placement backbone of our algorithm. We propose two
techniques, MMM and preconditioner for clock wirelength, to
speed up the clock-aware global placement algorithm. To show
their effectiveness, we design two algorithms for comparison.
One is Our-MMM, which only includes MMM for virtual
clock-tree construction, and the other is Ours-MMM-Pre which
includes both techniques.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 05:04:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS ON THE CLKISPD’05 BENCHMARK SUITE

Bench [5] Ours-MMM Ours-MMM-Pre
ClkWL HPWL Time (s) ClkWL HPWL Time (s) ClkWL HPWL Time (s)

clkad1 1.37 77.47 97.37 1.34 77.92 78.1 1.37 77.89 82.64
clkad2 1.53 85.79 179.53 1.48 89.81 150.79 1.50 88.31 137.68
clkad3 3.08 209.29 349.62 3.13 207.93 253.22 3.19 206.90 245.31
clkad4 3.17 193.66 377.9 2.91 204.24 303.16 3.29 199.29 268.51
clkbb1 1.65 94.05 202.55 1.58 95.11 151.58 1.60 94.73 154.88
clkbb2 3.40 158.02 388.5 3.69 155.52 230.42 3.64 157.56 238.02
clkbb3 5.47 393.53 1314.02 5.12 470.51 1132.72 5.99 379.96 641.22
clkbb4 12.04 879.42 4113.9 9.93 951.90 3293.8 11.51 909.78 3011.31

Avg 1.00⇥ 1.00⇥ 1.00⇥ 0.96⇥ 1.05⇥ 0.77⇥ 1.01⇥ 1.02⇥ 0.70⇥

TABLE II
STATISTICS OF CLKISPD’05 BENCHMARKS.

Name Cells Regs Nets Macros
clkad1 210K 32K 221K 56
clkad2 255K 38K 266K 177
clkad3 451K 68K 466K 721
clkad4 494K 74K 516K 1329
clkbb1 278K 42K 284K 30
clkbb2 535K 84K 577K 923
clkbb3 1095K 165K 1123K 666
clkbb4 2169K 327K 2230K 639

We use NTUplace3 [10] as our legalizer and skip detailed
placement because it optimizes signal wirelength only and may
harm the result of clock-net wirelength. After legalization,
we build the final zero-skew clock-tree for evaluation using
DME-based method [1], [5]. The wirelength of signal nets is
estimated with HPWL, while the wirelength of the clock net is
obtained by summing the Manhattan length of all edges in the
final clock-tree. Since global placement might easily diverge,
we record the result of best overflow for each run.

Experimental results are shown in Table I with wirelength
in ⇥106 and CPU time in seconds. Both Ours-MMM and
Ours-MMM-Pre are faster than [5] with 23% and 30% lower
runtime respectively. Compared to [5], Ours-MMM achieves
4% lower clock-net wirelength and 5% higher signal wire-
length while Ours-MMM-Pre achieves a more balanced result
with only 1% and 2% degradation on clock-net wirelength
and signal wirelength respectively. Since we use the same
placement backbone here, experimental results show that our
method can effectively alleviate the overhead brought by
iterative virtual clock-tree construction while maintaining high
quality of placement solution. Furthermore, after applying
the preconditioner for clock-net wirelength, our method can
achieve faster convergence speed and better balance between
the optimizations of signal wirelength and clock-net wire-
length.

V. CONCLUSION

In this work, we propose an improved clock-aware place-
ment methodology for electrostatics-based nonlinear placer
to minimize runtime overhead. Experiments show that our
method can achieve 30% lower runtime with negligible quality

degradation compared with previous methods on the CLK-
ISPD’05 benchmarks.

REFERENCES

[1] D.-J. Lee and I. L. Markov, “Obstacle-aware clock-tree shaping during
placement,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 31, no. 2, pp. 205–216, 2012.
[2] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, and A. Kahng, “Zero skew clock

routing with minimum wirelength,” IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, vol. 39, no. 11, pp.
799–814, 1992.

[3] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:

From Graph Partitioning to Timing Closure, 1st ed. Springer Publishing
Company, Incorporated, 2011.

[4] Y. Wang, Q. Zhou, X. Hong, and Y. Cai, “Clock-tree aware placement
based on dynamic clock-tree building,” in IEEE International Sympo-

sium on Circuits and Systems, 2007, pp. 2040–2043.
[5] J. Ding, L. Lu, Z. Fu, J. Ma, M. Gong, Y. Qi, and W. Yu, “Clock

aware low power placement,” in IEEE/ACM International Conference

on Computer Aided Design, 2023, pp. 01–08.
[6] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng,

and C.-K. Cheng, “ePlace: Electrostatics-based placement using fast
fourier transform and nesterov’s method,” ACM Transactions on Design

Automation of Electronic Systems, vol. 20, no. 2, pp. 1–34, 2015.
[7] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing

solution quality and routability validation in global placement,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 38, no. 9, pp. 1717–1730, 2019.
[8] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-aware analytical

placement for 3-D IC designs based on a novel weighted-average
wirelength model,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 4, pp. 497–509, 2013.
[9] M. Jackson, A. Srinivasan, and E. Kuh, “Clock routing for high-

performance ICs,” in ACM/IEEE Design Automation Conference, 1990,
pp. 573–579.

[10] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“NTUplace3: An analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1228–1240, 2008.

[11] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The
ISPD2005 placement contest and benchmark suite,” in International

Symposium on Physical Design, 2005, pp. 216–220.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 05:04:27 UTC from IEEE Xplore. Restrictions apply.

