
1

Defending Against Adversarial Attacks in Deep Learning
with Robust Auxiliary Classifiers Utilizing Bit-Plane Slicing

YUAN LIU, JINXIN DONG, and PINGQIANG ZHOU, ShanghaiTech University, China

Deep Neural Networks (DNNs) have been widely used in variety of fields with great success. However, recent
research indicates that DNNs are susceptible to adversarial attacks, which can easily fool the well-trained
DNN-based classifiers without being detected by human eyes. In this paper, we propose to integrate the target
DNN model with our robust bit-plane classifiers to defend against adversarial attacks. The bit-plane classifiers
take bit-planes of input images for convolution, which is motivated by our observation that successful attacks
aim to generate imperceptible perturbations, and they mainly affect the low-order bits of pixels in clean
images when adding the perturbations. We also propose two metrics, bit-plane perturbation rate and channel
modification rate, to further explain the robustness of bit-plane classifiers. We discuss potential adaptive
attack and find that our defense can be effective as long as the adversarial examples are qualified. We conduct
experiment on dataset CIFAR-10 and GTSRB under white-box attack and black-box attack. The results show
that our defense method can effectively increase the average model accuracy from 16.23% to 83.53% under
white-box attack and from 40.65% to 88.14% under black-box attack on CIFAR-10, without sacrificing the
accuracy of clean images.
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1 INTRODUCTION
Deep learning has shown great performance in image recognition [10], speech processing [8] and
automatic driving [5], etc. However, most designers in these areas seldom consider the security
problem. Recent research [25] shows that deep learning models are vulnerable to adversarial
examples which are crafted by adding elaborate perturbations to the clean images, also known as
adversarial attacks. Adversarial examples can induce classifiers to make wrong predictions while
they can still be identified correctly by human eyes. Imagining that when an automatic vehicle
recognizes a stop sign as a left–turn sign, it may cause serious traffic accident which can incur
huge cost [19]. Therefore, it is essential to defend against adversarial attacks.
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To make DNN models more robust against adversarial attacks, lots of countermeasures have
been proposed. Most of them can be classified into three categories. The first category focuses on
obtaining a more robust model, including adversarial training [13] and defensive distillation [20]
etc. Adversarial training firstly obtains adversarial examples and then trains the target model
with both adversarial and clean examples, which not only enhances robustness but also improves
generalization of the model. Distillation method firstly gets soft labels through an initial DNNmodel
and then trains the target model using the soft labels. The second category is input transformation
which includes dimension reduction [1], JPEG compression [15], width shift, height shift and
rotations etc. [22]. However, these transformations seldom remove the perturbations and also lack
quantitative explanation of why these transformations can work. Since it is difficult for DNN to
recognize the adversarial example correctly, classifying adversarial examples not only fails to get
the correct result, but also exposes the inner state of the classifier. Therefore, the last category is
adversarial example detection such as feature squeezing [26] and MagNet [17]. Feature squeezing
calculates prediction difference between an input example and its squeezed example, then regards
it as an adversarial example when the difference exceeds a threshold. MagNet also measures the
reconstruction error from adversarial examples and rejects examples with large reconstruction
errors.

 [8 - 1] bits  [8 - 2] bits  [8 - 3] bits  [8 - 4] bits 

 [8 - 5] bits  [8 - 6] bits  [8 - 7] bits  [8 - 8] bit 

Fig. 1. Images reconstructed from bit-planes. bit-plane 8 corresponds to the highest-order and bit-plane 1
corresponds to the lowest-order. [8 - G] means that the image is reconstructed using bit-planes from bit-plane
8 to bit-plane G .

In our work, we build robust bit-plane classifiers and then integrate the target model with
multiple bit-plane classifiers to defend against the adversarial attacks. Bit-planes [6] are extracted
from the same order as binary representation of the image pixel values. They have the same size as
the original image with values 0 or 1. Fig. 1 shows images constructed from different numbers of
bit-planes of an identical CIFAR-10 image. We can see that high-order bit-planes contain a large
amount of image information while the low-order bit-planes mainly contribute the details in the
image. Besides, we propose two metrics, bit-plane perturbation rate and channel modification rate,
to further quantitatively explain the robustness of the bit-plane classifiers, which is not considered
by other image transformation defense methods. The bit-plane perturbation rate measures the
differences of bit-planes between original data and adversarial examples. The channel modification
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rate measures the robustness of classifier to the input changes. By analyzing the two metrics, we
get the distribution of perturbations on bit-planes and observe that perturbations affect most bits
in the low-order plane, which motivates us to extract the unaffected high-order planes as input
features for classification. Therefore, we propose the robust bit-plane classifiers. Then following
the idea of ensemble learning [14], we integrate the target model with multiple robust bit-plane
classifiers as the classification system (see Fig. 2).

Our contributions are as follows:
• We perform bit-plane slicing transformation on the input image and get bit-planes. Based
on the bit-planes, we propose two new metrics: bit-plane perturbation rate and channel
modification rate.

• Based on the analysis of the proposed metrics, we find that most low-order bits are affected by
perturbations, which motives us to train bit-plane classifiers using the unaffected high-order
bit-planes.

• We follow the idea of ensemble learning and build a new defense architecture integrating
target model with robust bit-plane classifiers. Different integrating methods are discussed.

• We also discuss the potential adaptive attack and conclude that as long as the adversarial
examples are imperceptible and qualified, our defense can still work.

• We conduct experiments on two RGB datasets CIFAR-10 and GTSRB under white-box attack.
We also test black-box attack on CIFAR-10. Our defense method efficiently increases the
average model accuracy on adversarial examples of CIFAR-10 – from 16.23% to 83.53% under
white-box attack and from 40.65% to 88.14% under black-box attack.

The remainder of this paper is organized as follows: Section 2 introduces the background including
the basis of deep neural networks, the definition of adversarial examples and some attack methods.
Section 3 introduces the threat model and our proposed defense method. Experiment results of
our proposed method and adaptive attack are discussed in Section 4 and Section 5 respectively.
Section 6 gives the conclusion.

2 BACKGROUND
In this section, we introduce basis of neural networks, concept of adversarial examples and some
white-box and black-box attack methods.

2.1 Deep Neural Network
Deep Neural Networks (DNNs) consist of many neurons with different weighted connections. In
general, DNNs are composed of different layers including convolution layer, pooling layer and fully
connected layer [24]. Each layer can be modeled as a function � which accepts an input image G
and gives an output � (G). Denoting �! as the function of L-th layer, then we can get an output by
feeding an input into the DNN model layer by layer �! (�!−1 (· · ·�1 (G)) which is called forward
propagation. In most cases, the final layer is a fully connected layer that outputs a classification
result. Loss function is defined on model’s final outputs and true labels, when the outputs get
close to the true labels, the loss value gets small and vice versa. The training process uses gradient
descent strategy to minimize the loss function and updates the parameters of each layer. When the
training process is done, the well-trained neural network model can be used for inference.

2.2 Adversarial Examples
Adversarial examples are firstly proposed in [25]. They are generated by adding some deliberately
crafted perturbations to the clean image. Since the perturbations are imperceptible, they cannot
be detected by human eyes but can be misclassified by DNN-based classifiers. Different from the
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Fig. 2. The overall architecture of defense.

training process, adversarial examples' generating process updates the input image instead of
network's weights. We denote the target DNN model as5 and perturbation vector asXG with the
same dimension of input imageG. Distance metric is� which can be in! 1, ! 2 or ! 8=5norm. Then
the de�nition of adversarial examples can be formulated as follows:

min
XG

� ¹XGº

s.t. 5¹G¸ XGº < 5¹Gº
(1)

The formula is an optimization problem, it �nds the minimum perturbations under distance� with
the constraint that it can fool the classi�er5. WhenXG is found, the adversarial example can be
denoted asG¸ XG.

Fig. 3 shows an adversarial example in image recognition. The left clean image is classi�ed as a
panda with 57.7% con�dence by DNN model. After perturbations added to the clean image with
factor 0.007, the panda image is classi�ed as gibbon with 99.3% con�dence. However, these two
images are still panda if judged by the human eyes.

2.3 A�ack Methods

Many attack methods have been proposed to solve Eq. (1) or its equivalence problem. In this section,
we introduce �ve methods, including Fast Gradient Sign Method, DeepFool and C&W for white-box
attack, and SimBA, Zeroth Order Optimization for black-box attack.

2.3.1 Fast Gradient Sign Method (FGSM).FGSM method [7] calculates the gradient of the loss
function with respect to the input image, then updates the input with gradient ascent strategy. The
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Fig. 3. Adversarial examples [25]

update formula is shown below:

G03E = G¸ n � B86=¹r G� ¹\• G•~ºº (2)

Here y is the correct label forG, G03E is the generated adversarial example.n is a factor that controls
the magnitude of perturbations. To make the perturbations not being recognized by human eyes,
n is set to be small.� is the loss function with model parameters\ . The update formula uses the
gradient ascent policy and increase the loss value so that the classi�cation prediction result keep
away from the correct label, which successfully fool the DNN model.

2.3.2 DeepFool.DeepFool attack [18] is proposed to �nd the closest decision boundary from clean
images. Because crossing the decision boundary means misclassi�cation, this method �nds the
smallest perturbation which is also the moving distance from clean image to the closest boundary.
Assume that the target model is a a�ne classi�er5¹Gº = F ) G¸ 1 with a winner-takes-all policy,
whereF is the weight matrix and1 is the bias.F : is the k-th column ofF and:̂ ¹Gº is the correct
label of the input imageG. Then the generation of minimal perturbations can be written as follows:

min
XG

� ¹XGº

B”C 9: : F )
: ¹G¸ XGº ¸ 1: ¡ F )

:̂ ¹Gº
¹G¸ XGº ¸ 1:̂ ¹Gº

(3)

Eq. (3) �nds the minimum distance from input imageGto all decision boundaries and the distance
can be computed in a closed form. For general non-linear classi�ers, linear approximation with
iterations can be used to get the optimalXG.

2.3.3 Carlini and Wagner (C&W).The original Eq.(1)is di�cult to solve with existing algorithms
because the constraint5¹Gº < 5¹G¸ Xº is non-linear. To solve this problem, Carlini and Wagner [3]
transform the original optimization problem to an equivalent problem as follows:

min � ¹XGº

s.t. 5¹G¸ XGº = C

G¸ XG 2 »0•1¼
(4)

An objective function� 0 is de�ned such that5¹G¸ XGº = Cif and only if � 0¹G¸ XGº � 0. By selecting
function � 0 properly, this problem can be solved by existing methods [27].

2.3.4 Projected Gradient Descent (PGD).PGD attack is the most powerful �rst-order attack. Based
on Basic Iterative Method (BIM), PGD takes random perturbation of the original sample in its
neighborhood as the initial input of the algorithm and generates adversarial examples after several
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iterations. Its performance has been signi�cantly improved and it has good mobility and anti-damage
ability.

2.3.5 SimBA.SimBA [9] is an iterative attack method aiming to black-box adversarial attack.
Assume that� ¹Gº is a black-box neural network with output probability?� ¹~jGº. SimBA utilizes
the output probability as a guidance to search for directions to �nd the adversarial example. It
comes from the intuition that for any direction@in orthogonal set Q and some step sizen, one of
G¸ n@or G� n@is likely to decrease the?� ¹~jGº. Therefore, we can repeatedly choose a random
direction@and makeGeither add or subtract byn@. If G¸ n@can decrease the output probability,
we take this step, or we takeG� n@. Here the only hyper-parameters are direction sets& and step
sizen.

2.3.6 Zeroth Order Optimization (ZOO).ZOO [4] is an e�ective method for black-box attack. Since
we can only query output for input by model5, ZOO calculates the gradient by the de�nition of
gradient. By evaluating two very close points5¹G¸ �48º and 5¹G� �48º with a small� , we can
estimate the gradient along direction vector48 by the following formula.

6̂8 =
m5¹Gº

mG8
�

5¹G¸ �48º � 5¹G� �48º
2�

(5)

Here48 is a standard basis vector with only the i-th component as 1. Once we get the estimated
gradients, we can apply gradient descent to generate adversarial examples.

2.3.7 Boundary A�ack.In the iteration process of Boundary Attack [2], the adversarial example
will gradually approach the original image from the initialized image until the decision boundary
is found. Algorithm �nd the closest adversarial example to the original image on the decision
boundary. In the k-th iteration, the algorithm selects the perturbation that satis�es the following
conditions (1) The perturbation sample should be in the input domain; (2) The perturbation quantity
should be correlated with the distance between the adversarial example and the original image; (3)
The perturbation of this step should further reduce the di�erence between the adversarial example
and the original image;

3 DEFENSE METHOD

In this section, we introduce threat model including white-box and black-box attack. We introduce
bit-plane of images and also propose two new metrics, bit-plane perturbation rate and channel
modi�cation rate, to quantify impact of perturbations on the bit-plane. Finally, we discuss ensemble
methods and give defense architecture.

3.1 Threat Model

3.1.1 White-box a�ack.Under assumptions of white-box attack, attackers can get all information
about target model including architecture, training data, optimization method and all hyper-
parameters. The attacker can use all the information above with some powerful attack methods to
generate adversarial examples to fool the network.

3.1.2 Black-box a�ack.Opposite to the white-box attack, under black-box attacks, attackers know
nothing about target model. This scenario is more common in real world such as machine learning
as cloud service. In most cases, DNN model providers package the DNN models as APIs, then
expose the APIs as services to users and attackers can only query outputs for their inputs through
the services. More strictly, the times of queries can be limited. In this case, attackers have no ability
to get gradient information or any other inner state of the target model.
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On the defensive side, defenders have no permission to modify any states or parameters of
the model. They can only make some changes to inputs or outputs. Moreover, defenders have no
information about how the adversarial examples are generated.

3.2 Bit-Plane Slicing

Images consist of pixels and each pixel contains R/G/B channels. The value of each channel ranges
from 0 to 255. Bit-plane slicing [6] transforms each pixel value from integer to 8-bit binary number.
Therefore, a gray image can be considered as 8 one-bit planes and an RGB image can be considered
as 24 one-bit planes. Reconstructions of each pixel are done by multiplying2=� 1 with bit values of
the n-th plane and then adding all resulting planes up. Obviously, high-order bits take more weight
in pixels and contribute more than low-order bits. To make it clear, Fig. 4 shows the transformation
from a gray image to 8 one-bit planes. Given a 3x3 gray image, each pixel value is transformed
to 8-bit binary representation and the same order bits are taken out to form a new bit-plane. The
bit-plane has the same size as the original image. Note that high-order bits correspond to the
high-order bit-planes.

Fig. 4. Process of bit-plane slicing.

Because noise in images usually is small and imperceptible, bit-plane slicing is used as noise
�ltering algorithm in digital image processing [6]. It is consistent with the idea in defending against
adversarial attacks, where adversarial perturbation can be also treated as a special image noise.

3.3 Bit-plane Perturbation Rate

Here we de�ne the bit-plane perturbation rate as the following:

�%%'8 =
BD<¹G>A¹1?8•1?�3E8ºº

" � #
� 100% (6)

where1?8and1?�3E8represent the8� C�bit-plane of clean data and adversarial example respectively.
Since bit-plane only contains 0 and 1, xor operation calculates the di�erence." and# are height
and width of the bit-plane.�%%'8 means the perturbation rate of the8� C� bit-plane between
clean data and adversarial examples. Hence, perturbation rate measures how perturbations a�ect
the clean data from the view of bit-plane. Moreover, perturbation rate also measures magnitude
of adversarial perturbations. High perturbation rate in high-order bit means that the adversarial
perturbation is large, because only large perturbations can a�ect the high-order bits. Fig. 5 gives an
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example of calculating bit-plane perturbation rate. The numbers in orange mean di�erent numbers
between bit-planes.

Fig. 5. Calculation of bit-plane perturbation rate.

By calculating bit-plane perturbation rate between clean data and adversarial examples, we
get Fig. 7 showing that perturbations a�ect most bits in low-order bit-planes. The result is also
consistent with our intuition.

3.4 Channel Modification Rate

Channel modi�cation rate is de�ned as the number of channels modi�ed by the perturbations
divided by the number of total channels. In image classi�cation, input images are often repre-
sented as RGB channels. However, RGB channels are sensitive to perturbations, because any small
modi�cations added to pixels change total RGB channels. Take Fig. 6 as an example. When small

Fig. 6. Channel modification rate of RGB and bit-plane.

perturbations are added to RGB pixel value, total RGB channels are modi�ed which leads to a
channel modi�cation rate of 3/3. However, when pixels are transformed to binary representation,
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