
RapidPnR: Accelerating the Physical Design for
FPGAs via Design-Level Parallelism

Wanzheng Weng, Pingqiang Zhou
School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Email: {wengwzh2022, zhoupq}@shanghaitech.edu.cn

Abstract—The runtime of physical design has become a critical
issue for FPGA development as the scale and complexity of circuit
designs surge with the increasing logic capacity of FPGA devices.
The time-consuming process of physical design significantly
extends the cycle of design iteration, which heavily impacts the
efficiency of debugging and architecture optimization. To address
this issue, this work proposes a generic, fully-automated and split-
and-parallel physical design flow to accelerate the deployment of
large-scale circuits on FPGAs. Specifically, our flow automatically
partitions the synthesized netlist into multiple smaller pieces,
performs parallel physical design of each piece, and then merges
them into the complete design. Evaluated on a set of real circuit
benchmarks, our flow reduces the runtime by more than 50%
and ensures nearly the same design frequency compared to the
physical design flow provided by the commercial tool Vivado.

As the scale and complexity of circuits continue to grow,
the runtime issue of physical design on FPGAs has become
increasingly significant. The time-consuming process of place-
ment and routing directly extends the cycle of design iteration,
which affects the efficiency of debugging and performance
optimization of target designs.

In recent years, numerous efforts have been made to accel-
erate the physical design for FPGAs, and their methodologies
can generally be classified into two categories: Algorithm-
level parallelism first decomposes key physical design algo-
rithms, such as placement [3] and routing [4], into multiple
independent tasks, then executes these tasks in parallel on
GPUs [3] or multicore CPUs [4]. Most of these works don’t
consider timing optimization, which accounts for most runtime
of high-performance physical design and is difficult to paral-
lelize [1]. Design-level parallelism [1], [2] directly partitions
the original circuit into multiple disjoint islands, then performs
physical design on each island concurrently, and finally merges
them into the complete design. The state-of-the-art design-
level parallelism works are only applicable to HLS designs
with the dataflow architecture. Their implementation relies
on the module hierarchy information provided by the design
language and latency-insensitive nature of dataflow designs.

In this work, we explore the idea of design-level parallelism
at the netlist level and propose a fully automated, split-and-
parallel and high-performance physical design flow which
is independent of detailed circuit architectures or front-end
design languages. More specifically, our flow consists of three
main stages as illustrated in Fig. 1. The first stage transforms
the synthesized netlist into an abstract hypergraph, which aims

This work was financially supported by the Science and Technology
Commission of Shanghai Municipality (STCSM) under Grant 24JD1402500.

Fig. 1. An illustration of proposed split-and-parallel physical design flow:
(a) the synthesized netlist; (b) the abstract hypergraph and its partition and
floorplan results; (c) split and parallel physical design of each island; (d) the
complete design after merging islands together.

to conceal some critical nets that may cause routing errors
or timing violations if cut during partitioning. In the second
stage, the entire FPGA is divided into disjoint islands using
a grid. Then we develop an efficient two-stage algorithm
to distribute abstract vertices across these islands, ensuring
multiple utilization constraints and minimizing the number of
inter-island nets. To guide the placement and routing of inter-
island nets, we extract the source cell of each inter-island
net and assign it to the boundary region. Then we perform
physical design of each island along with its boundary regions
in parallel and merge them into the complete design.

Evaluated on a set of FPGA designs with diverse architec-
ture patterns, our flow speeds up the process of physical design
by 1.6x–2.5x with an average frequency degradation of only
6% compared to the commercial tool Vivado.

REFERENCES

[1] L. Guo, et al. “Rapidstream: parallel physical implementation of fpga hls
designs,” in Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 1–12, 2022.

[2] Y. Xiao, et al.“Fast Linking of Separately-Compiled FPGA Blocks
without a NoC,” International Conference on Field-Programmable Tech-
nology, Maui, HI, USA, 2020, pp. 196-205.

[3] J. Mai, et al. “Multi-electrostatic fpga placement considering slicel-
slicem heterogeneity and clock feasibility,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 649–654, 2022.

[4] T. Martin, et al. “A High-Performance Routing Engine for Large-Scale
FPGAs,” International Conference on Field-Programmable Logic and
Applications, Torino, Italy, 2024, pp. 53-59.

278

2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/25/$31.00 ©2025 IEEE
DOI 10.1109/FCCM62733.2025.00050

20
25

 IE
EE

 3
3r

d
An

nu
al

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Fi

el
d-

Pr
og

ra
m

m
ab

le
 C

us
to

m
 C

om
pu

tin
g

M
ac

hi
ne

s (
FC

CM
) |

 9
79

-8
-3

31
5-

02
81

-2
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FC

CM
62

73
3.

20
25

.0
00

50

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

