
CoDRAM: A Novel Near Memory Computing
Framework with Computational DRAM

Yu Ma, Linfeng Zheng and Pingqiang Zhou

School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
{mayu, zhenglf, zhoupq}@shanghaitech.edu.cn

Abstract—As CPU frequency and computing power grow
fast, conventional Von Neumann architecture is suffering
from more and more severe data transfer latency and
power consumption between CPU and DRAM, known
as memory wall problem. In this paper, we propose a
novel near memory architecture based on the H-tree ar-
chitecture of DRAM to decrease the data transfer latency.
There are three work modes in the proposed CoDRAM,
GMM (General Main Memory Mode), ACM (Auxiliary
Computing Mode) and PCM (Parallel Computing Mode).
Compared with conventional CPU+DRAM architecture, the
experiment shows that the proposed CoDRAM computing
framework can improve about 20% and 33% performance
on matrix addition and integral image computing in ACM
mode. And in PCM mode, the improvement is about 15×
and 3× in matrix addition and integral image computing.
Meanwhile, the overhead in GMM mode is only about 1%.

1. Introduction

In the current computer architecture, the processor and
the memory are separated, so the processor has to fetch
data from the memory at the beginning of computation
and then write the result back to memory after the
computation. Such architecture didn’t show big problem
when the processor performance was low. However, as
processor speed increases rapidly, it is getting harder
and harder for the memory to catch up with the speed
of processors [1]. Therefore, in the whole computing
process, the data transfer between processor and memory
is becoming a dominant factor of performance. For
example, the GEM-5 [2] simulation result (see Figure 1)
shows that the time consumption of computing is only
about 25% in a 106 scale int-type computing task.

Computing, 25%

Data Transfer
Latency, 33%

Data Access,
Instrunctions

Access,
Instrunctions
Transfer and
Others, 42%

Figure 1. Time Consumption Ingredient of 106 Addition with Memory
Access.

In system level, there have been two main threads in
architecture research aiming to reduce data movement.
One is heterogeneous computing scheme with accel-
erators. Researchers have explored FPGAs (Field Pro-
grammable Gate Array) to build accelerators for some
specific applications [3], [4]. The main issue with FPGA
is that it is designed based on LUP (Look Up Table)
which has limited area usage. Besides FPGA, researchers
also attempted to design ASIC-based accelerators [5].
Another thread is the design of in-memory processors [6].
Besides, there are also works building a new architecture
to reduce data movement by exploiting the structure of
the memory itself. Seshadri et al. [7] and Shuangchen [8]
exploit bitwise computing in DRAM. Aga et al. [9] ex-
ploit in-place computing in SRAM. Although the in-place
bitwise computing can reduce the time consumption of
data transfer, it may lead to a complicated operation
sequence because even a simple addition operation need
a sequence of XOR, NOT and AND operations. And this
will lead to a requirement on complicated controller.
In this paper, we design a novel near memory computing
architecture based on DRAM technology. We explore
the benefits of adding a small number of computing
components, such as adders, to the memory, with the
constraint of bringing little overhead to the existing
memory design. In this case, some operations, such as
addition, can be performed in a short pipeline, reducing
the difficulty of control compared with the bitwise in-
place computing methods.
The rest of the paper is organized as follows. We intro-
duce the proposed design in Section 2. Then, experimen-
tal results are described in Section 3. Finally, we make
conclusion in Section 4.

2. Our Proposed CoDRAM Framework

This work explores a method that the main memory has
its own cache and simple computing devices. In this way,
we can improve the computing speed by minimizing data
transfers between processor and memory. The proposed
framework includes two parts:

• CoDRAM architecture. In order to adding the com-
puting function to DRAM, we propose a new

978-1-7281-0735-6/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 07,2021 at 09:32:03 UTC from IEEE Xplore. Restrictions apply.

DRAM architecture – CoDRAM in Section 2.1.
This new DRAM can perform both the traditional
function of DRAM and simple computing function
of a processor.

• Computing workflow. Given a program, in our pro-
posed framework, the first step of processing a task
is to determine which compute should be computed
in CPU and which should go to CoDRAM. We
propose a method to determine where the compute
will be executed and the modified execution pipeline
and in Section 2.2.

2.1 Our Proposed CoDRAM Architecture
We propose a novel near memory architecture called
CoDRAM, which is shown in Figure 2. The main idea
is to add computing modules to DRAM without much
area overhead. The architecture is shown in Figure 2 (a).
In the architecture, there are memory arrays (P1− P4)
and computing modules (L1.1 − L1.4 and L2). Inside
each computing module, there are SRAM and computing
units as shown in Figure 2 (b). The architecture has
several computing levels, and there are different number
of computing modules in each level, as shown in Fig-
ure 2 (c). The top level has 20 = 1 computing module.
The next level has 21 = 2 modules and so on. In the
H-tree organization [10], a computing module is always
paired with a storage part. The proposed CoDRAM can
work in the following three modes:

• General Main Memory Mode (GMM). In this
mode, the proposed architecture works as a con-
ventional DRAM, it only performs read and write
in this mode.

• Auxiliary Computing Mode (ACM). The ACM
mode is a mode that proposed CoDRAM can com-
pute controlled by CPU. It performs simple com-
putation to decrease the amount of data transferring
between CPU and itself.

• Parallel Computing Mode (PCM). In this mode,
the proposed CoDRAM can work as a parallel
computing system. For example, if there are a few
matrix addition to be executed. The proposed frame-
work first maps the data to different corresponding
parts and then data will be computed in computing
modules.

In order to introduce the process of computing in ACM
mode, we take a simple example. Assume that A, B, C
and D are four digits stored in subarrays (the primary
storage part) as shown in Figure 2 (a). In the computing
process, operands are firstly sent to the closest computing
module. For example, when A + B is being computed,
both A and B are sent to computing module L1. If C+D
is being computed, C and D will be sent to L2. After
the operands are prepared, the computing module will
execute the computation in the following cycles. If there

is a great amount of data to be processed in identical
way. For example, a great many of digits are being added,
d1+d2+· · ·+dn. Firstly, we map each digit to subarrays.
Then we compute from the near to the distant. Digits in
the same P∗ (P1, P2, P3, P4) are added in L1.1−L1.4 in
parallel. After that, the results in L1.1 - L1.4 are accessed
to L2, and then to higher level computing modules. At
last, we complete the computation in module Ln (see
Figure 2 (c)).

2.2 Computing Task Assignment and Pipeline

2.2.1) Task Assignment: In conventional computing
framework, CPU plays the role of computing and control-
ling. When CPU executes an instruction, if the process
needs to get data from memory, it first access cache for
the data. If the data is not in cache, the CPU will access
the DRAM or even the hard disk. For example, if matrix
addition, A+B, is being computed, where

A =

 A1
1 · · · An

1
...

. . .
...

A1
n · · · An

n

 ,B =

 B1
1 · · · Bn

1
...

. . .
...

B1
n · · · Bn

n

There are N ×N additions, and for each addition, CPU
will first LOAD data. CPU needs to first search data of
matrix A and B, Aj

i and Bj
i in cache. If the data isn’t

in cache, the CPU will access data from DRAM. After
getting the operands, CPU can then compute the addition.
In the process, the latency that data transfer to CPU is
dominant.
In the proposed framework, CPU is mainly a host. For
operations that can be performed in CoDRAM, CPU will
ask CoDRAM to deal with it, reducing the latency of data
transfer. Otherwise, CPU computes as usual.
2.2.2) Task Pipeline: In conventional computing work-
flow, CPU is the center of the whole system. The perfor-
mance of an instruction can be summarized as follows:

1) When an operation is to be executed, CPU first per-
forms Instruction Fetch (IF), getting an instruction
from the main memory.

2) Then the CPU interprets the instruction to a specific
operation and operands which is called Instruction
Decode (ID).

3) After that, CPU will execute (EX) the instruction.
4) If there is any data needed in the main memory,

there will be a process called Memory (MEM).
During this process, operands which are needed will
be accessed from the main memory.

5) Finally, the CPU is going to Write Back (WB) the
the result to register, cache or main memory.

One can notice that in the process (4) and (5), the CPU
will access memory to read operands and write back
results in some cases. This process is the major source
of the latency and energy consumption.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 07,2021 at 09:32:03 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Organization of CoDRAM.

In the proposed workflow, CPU will directly send an
instruction to the main memory instead of executing (4)
and (5). This will lead to a cut down of latency and
energy consumption because, in this case, CPU doesn’t
need to wait data from and write back to DRAM. In
the example A + B, every addition will access two
operands from DRAM and write back the result. There
are N ×N × 3 = 3N2 numbers to be accessed in total.
If the N is large, the total access time will be very
large. These accesses can be avoided in the proposed
framework.

3. Experimental Results
In this experiment, we set the computing unit as one
32 − bit adder and SRAM as 2KB. Besides, we con-
figure computing modules in Ln − Ln−7 levels for this
experiment. In other words, other levels are traditional
DRAM’s H-tree organization. We evaluate this work in
circuit and system level, respectively:

• In circuit level, we use CACTI [10] to evaluate the
overhead of DRAM in Section 3.1. As additional
components are introduced in DRAM, we evaluate
the latency and energy overhead compared to nor-
mal DRAM.

• In system level evaluation. We use GEM-5 [2] to ap-
proximately evaluate the ACM mode in Section 3.2.
Since the proposed framework has little data transfer
latency (the main part of our optimization), we
simulate performance of a normal memory hierar-
chies architecture ignoring latency of transfer in data
bus and queuing for bus available. We remain the
instruction transfer latency because we also need
CPU to execute some instructions. We set CPU
frequency as 3.2GHz with 64KB L1 cache and
1MB L2 cache. Besides, we program a simulator
for PCM mode in Section 3.3.

We evaluate two applications: matrix addition and in-
tegral image computing. As for matrix addition, we
generate two hundred 100× 100 matrices randomly and
evaluate the speed of ten, fifty and one hundred times
matrix addition operations. As for integral image, we use
pictures in [11].

3.1 GMM Mode Overhead
We simulate the proposed CoDRAM architecture with
CACTI [10], Table 1 shows the overhead of additional
computing module. In the next section, we will compare
the performance increase in the other two working mode.

Table 1
GMM MODE OVERHEAD.

DRAM CoDRAM Overhead
Area (mm) 102.057 103.866 1.77%
Access Time (ns) 7.371 7.388 0.23%
Read Energy (nJ) 0.193 0.195 1.03%
Write Energy (nJ) 0.209 0.211 0.96%

The GMM mode has a little worse performance in
READ and WRITE operation compared with general
DRAM because components in our proposed architecture
are simple enough. If we want to give the proposed
CoDRAM more computing function, the overhead will
be larger. However, this simple addition components can
perform a lot of applications.

3.2 ACM Mode Results
Figure 3 and Table 2 shows the improvement and latency
details, respectively. We use GEM-5 [2] to simulate these
two applications in different scale of input data. We count
all data transfer latency which mainly composes of bus
latency and queue latency. In ACM Mode, we think
they’re the main part of our optimization. Simulation
time means how long the corresponding application runs
in the simulated environment. We can notice that in

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 07,2021 at 09:32:03 UTC from IEEE Xplore. Restrictions apply.

