
Incremental Rule Discovery in Response to Parameter
Updates
HAOXIAN CHEN∗, ShanghaiTech University, China
WENFEI FAN, Shenzhen Institute of Computing Sciences, China, University of Edinburgh, United Kingdom,
and Beihang University, China
JIAYE ZHENG, ShanghaiTech University, China

This paper studies incremental rule discovery. Given a dataset D, rule discovery is to mine the set of all rules
on D such that their supports and confidences are above thresholds 𝜎 and 𝛿 , respectively. We formulate
incremental problems in response to updates Δ𝜎 and/or Δ𝛿 , to compute rules added and/or removed with
respect to 𝜎 + Δ𝜎 and 𝛿 + Δ𝛿 . The need for studying the problems is evident since practitioners often want to
adjust their support and confidence thresholds during discovery. The objective is to minimize unnecessary
recomputation during the adjustments, not to restart the costly discovery process from scratch. As a testbed,
we consider entity enhancing rules, which subsume popular data quality rules as special cases. We develop
three incremental algorithms in response to Δ𝜎 , Δ𝛿 and both. We show that relative to a batch discovery
algorithm, these algorithms are bounded, i.e., they incur the minimum cost among all incrementalizations
of the batch one, and parallelly scalable, i.e., they guarantee to reduce runtime when given more processors.
Using real-life data, we empirically verify that the incremental algorithms outperform the batch counterpart
by up to 658× when Δ𝜎 and Δ𝛿 are either positive or negative.

CCS Concepts: • Information systems→ Information integration.

Additional Key Words and Phrases: Rule discovery, incremental discovery

ACM Reference Format:
Haoxian Chen, Wenfei Fan, and Jiaye Zheng. 2025. Incremental Rule Discovery in Response to Parameter
Updates. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 175 (June 2025), 28 pages. https://doi.org/10.1145/
3725312

1 Introduction
Rule discovery has been studied for decades. Given a dataset D, it is to mine the set of all rules
from D such that each rule in Σ is above a threshold 𝜆 = (𝜎, 𝛿) for its quality, measured in terms
of support (i.e., how frequent the rule can be applied to D), and confidence (i.e., how reliable the
rule is for D), which are controlled by configurable parameters 𝜎 and 𝛿 , respectively. We refer
to such a discovery algorithm as a batch algorithm for mining the rules in a batch. A variety of
batch discovery algorithms have been developed, e.g., [3, 5, 7, 11–13, 21, 22, 24, 27, 29, 30, 36–
40, 42, 43, 45, 49, 50, 55–57, 60–62, 66–68, 71, 72, 74–77, 79, 85, 88, 88–90, 92, 93, 95].

Rule discovery is, however, costly. For example, it takes 1.5 hours for the state-of-the-art (SOTA)
BatchMiner [29] to mine REEs on a relation with 27 attributes and 5M tuples (Section 7). Moreover,
setting good support and confidence thresholds 𝜆 = (𝜎, 𝛿) is challenging, especially when users do
∗Corresponding author.

Authors’ Contact Information: Haoxian Chen, ShanghaiTech University, China, hxchen@shanghaitech.edu.cn; Wenfei Fan,
Shenzhen Institute of Computing Sciences, China and University of Edinburgh, United Kingdom and Beihang University,
China, wenfei@inf.ed.ac.uk; Jiaye Zheng, ShanghaiTech University, China, zhengjy2022@shanghaitech.edu.cn.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/6-ART175
https://doi.org/10.1145/3725312

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

https://doi.org/10.1145/3725312
https://doi.org/10.1145/3725312
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3725312

175:2 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

not have sufficient prior knowledge about the datasets. For instance, when discovering rules for
banking regulatory, if certain tables have relatively few records, setting a high support threshold
could fail to discover meaningful rules. Conversely, a very low support threshold may lead to
incorrect or unreliable rules, as they might be based on a limited number of instances. Additionally,
if data instances are noisy, users often do not have precise knowledge about the extent of such noise,
making it hard to determine an appropriate confidence threshold. Thus, in real-life applications,
practitioners often have to adjust 𝜆 iteratively during the discovery process. As will be seen in
Section 7, it takes 6 trials on average for a data quality expert to determine the right values for 𝜆.
However, it is too time-consuming to run a batch discovery algorithm for every 𝜆 value starting
from scratch. One does not want to wait for hours when 𝜆 is slightly changed.
With this comes the need for studying incremental discovery in response to updates Δ𝜆 to

parameter 𝜆. Suppose that a set Σ of rules has been found from dataset D subject to parameters 𝜆
by a batch algorithm A. Informally, when 𝜆 is updated by Δ𝜆 = (Δ𝜎,Δ𝛿), incremental discovery
aims to compute changes ΔΣ to Σ in response to Δ𝜆 such that the set of rules discovered by A
from D subject to (𝜎 + Δ𝜎, 𝛿 + Δ𝛿) is Σ ⊕ ΔΣ, where Σ ⊕ ΔΣ means updating Σ with ΔΣ. More
specifically, a rule is in the updated set Σ ⊕ ΔΣ if and only if it has support above 𝜎 + Δ𝜎 and
confidence at least 𝛿 + Δ𝛿 . The rational behind incremental discovery is that Δ𝜆 is typically small
in practice; when Δ𝜆 is small, it is often more efficient to compute updates ΔΣ to Σ by minimizing
unnecessary recomputation, than mining rules from D subject to 𝜆 + Δ𝜆 starting from scratch.
Better yet, incremental algorithms upon Δ𝜆 suggest new paradigms for discovering rules. The

users can start with parameter settings that are quick to discover an initial set of rules, and then
gradually fine-tune 𝜎 and 𝛿 to mine rules that meet their need, based on the insights gained from the
initial batch. Hence, practitioners may opt to discover the highest-quality rules first and then adjust
𝜎 and 𝛿 to find more. Alternatively, they may produce a stream of rule outputs with small delays
between them, with no unnecessary recomputation and thus less total mining time (Section 7).

No matter how desirable, little previous work has studied incremental rule discovery in response
to parameter updates. Several issues need to be investigated. Is it possible to develop incremental
algorithms that outperform batch discovery when Δ𝜆 is frequent yet small? Moreover, can the
algorithms guarantee the “effectiveness” of the incremental computation, i.e., they warrant to incur
the minimum cost when deducing the incremental algorithms from batch discovery? Can such
algorithms scale with large datasets?

We answers these questions. As a testbed, we consider Rules for Entity Enhancing (REEs) [32, 34],
which are used by Rock [2, 10] and deployed in a variety of real applications. Moreover, REEs
subsume functional dependencies (FDs), conditional functional dependencies (CFDs) [26] and denial
constraints (DCs) [9] as special cases. Thus an effective strategy for incremental REE discovery
can be readily adapted to algorithms for mining all FDs, CFDs and DCs subject to support and
confidence, not limited to BatchMiner of [29].
Challenges. The incremental discovery problem poses several challenges: (1) mining REEs across
multiple tables with variables, beyond constant rules defined on a single tuple [8]; (2) determining the
extent towhich the incremental algorithm can effectively reuse auxiliary structures and intermediate
results from batch discovery, with accuracy guarantees; (3) ensuring performance guarantees,
including correctness, relative boundedness and parallel scalability (see below); (4) accelerating
incremental discovery in practice, a challenging yet necessary task in industry, to accommodate
updated parameters for complex rules such as REEs; and (5) mitigating the exponential growth of
intermediate data sizes during the rule discovery process without compromising precision.
Contributions & organization. We study the incremental problem. After reviewing REEs in

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:3

Section 2, we report the following.
(1) Problem statement (Section 3). We formulate three variants in response to Δ𝜎,Δ𝛿 and Δ𝜆 (i.e.,
both Δ𝜎 and Δ𝛿). We approach the problems by adapting incrementalization [35] of batch graph
algorithms to relational rule discovery. Intuitively, when practitioners well understand how a batch
discovery algorithm BatchMiner behaves to different inputs, we deduce incremental algorithms
from it, retain the same logic and data structure of BatchMiner, and guarantee both the correctness
and relative boundedness (see below).
(2) Incremental algorithm in response to Δ𝜎 (Section 4). We develop an incremental discovery algo-
rithm IncMiner𝜎 in response to updates Δ𝜎 to the support threshold. We incrementalize the batch
algorithm BatchMiner of [29], the SOTA algorithm for REE mining. We show that IncMiner𝜎 is (a)
correct, i.e., it computes exactly those rules to be removed or added when 𝜎 is increased (Δ𝜎 > 0)
or decreased (Δ𝜎 < 0), respectively; and (b) bounded relative to its batch counterpart, i.e., it incurs
the minimum cost among all incrementalized algorithms of BatchMiner [33].
(3) Incremental algorithms in response to Δ𝛿 (Section 5). We also provide incremental discovery
algorithms in response to updates Δ𝛿 to confidence threshold. The handling of Δ𝛿 is harder than
its Δ𝜎 counterpart since confidence does not have the anti-monotonicity. To speed up traversal
of (possibly exponential) search lattice, we propose a sampling strategy and show that it is NP-
complete to find an optimal sampling. This said, we develop (a) an exact algorithm IncMiner𝛿 and
(b) an approximate IncMiner≈

𝛿
with provable guarantees on the recall, both leveraging sampling.

We show that both algorithms are bounded relative to BatchMiner [29].
(4) Incremental algorithms in response to both (Section 6). Putting IncMiner𝜎 and IncMiner𝛿 to-
gether, we develop an incremental rule discovery algorithm IncMiner𝜆 in response to both Δ𝛿 and
Δ𝜎 at the same time. Moreover, we parallelize IncMiner𝜆 , denoted by PIncMiner𝜆 , to scale with
large datasets. We show that relative to the batch algorithm BatchMiner [29, 64], PIncMiner𝜆 is
not only bounded, but also parallelly scalable, i.e., it guarantees to reduce parallel runtime when
provided with more processors [52].
(5) Experimental study (Section 7). Using real-life data, we empirically find the following. (a) Incre-
mental rule discovery is effective. PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) consistently beat BatchMiner no
matter whether Δ𝜎 and Δ𝛿 are positive or negative, by up to 658×. (b) The incremental algorithms
outperform BatchMiner even when Δ𝜎 and Δ𝛿 account for 99% and 20% of 𝜎 and 𝛿 , respectively. (c)
PIncMiner𝜆 is parallelly scalable. It is 4.3× faster when the number 𝑛 of machines varies from 4 to 20.
It is promising in practice. It takes 170𝑠 on a dataset with 32K tuples when𝑛 = 20, when Δ𝜎 (resp. Δ𝛿)
is 99% (resp. 10%) of 𝜎 (resp. 𝛿), as opposed to 664𝑠 of the parallelized BatchMiner. (d) Our sampling
and approximation strategies are effective, improving the performance by 4× and 9×, respectively.

Related work. We categorize the related work as follows.
Rule discovery. Discovery methods can be classified as follows (see [68, 85] for surveys): (1) levelwise
lattice traversal for mining FDs [26, 40, 42, 45, 45, 57, 61, 62, 75, 77, 92, 93], association rules [36]
and REEs [25, 28–30]; (2) depth-first search methods for FDs [3, 90] and DCs [11, 22, 56, 64]; (3)
hybrid approaches for mining matching dependencies (MDs) [50, 74]; (4) learning-based methods
for database dependencies [37, 95] and entity resolution (ER) rules [49, 76]; and (5) other technique
such as tree-based search for frequent patterns [43] and association rules [89]. Parallel discovery
methods have been developed for, e.g., REEs [29, 30], under the Bulk Synchronous Parallel (BSP) [86]
model (see [39] for a survey).

Rule mining has been widely used in various applications such as XAI [71], string matching [13],

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:4 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

inductive logic programming [38, 60, 87], classification and regression [7, 12, 21, 55, 66, 67, 88].
As opposed to the prior work, we (a) study the problem of incremental rule discovery upon

parameter changes; and (b) develop new lattice traversal and sampling methods to ensure the
relative boundedness and minimize unnecessary recomputation. To do these, we incrementalize
the (parallel) batch algorithm BatchMiner of [29].
Sampling. Sampling has been widely employed in rule discovery to scale to large datasets, for
association rules [17–20, 23, 44, 46, 47, 53, 54, 58, 59, 63, 70, 83, 94, 96], DCs [11, 56], FDs [51],
REEs [29], and database queries [91]. Unlike the prior workwhere sampling is applied to the datasets,
we sample the search lattice to enable efficient rule recovery upon parameter changes (Section 5).
Incremental rule discovery. The prior work has primarily focused on rule discovery in response to
data updates: graph association rules in the presence of updates to graphs [31], DCs with tuple
insertions [65], and point-wise order dependencies (PODs) with relation updates [80]. Incremental
mining has also been studied for FDs [14–16, 75], association rules [6, 73, 82, 84], and temporal
association rules [41] in response to database updates.

Closer to this work is IApriori [8], to mine constant association rules under dynamic thresholds
(support and confidence) with the Apriori [5] algorithm. It extracts frequent itemsets from transac-
tion dataset and reuses them in subsequent mining operations when thresholds are updated, thus
reducing mining overhead.

As opposed to [6, 14–16, 31, 41, 65, 73, 75, 80, 82, 84], we study incremental discovery in response
to updated parameters rather than updated datasets. Compared to IApriori [8], (a) we study REEs
across different tables with multiple variables, beyond constant rules defined on a single tuple; (b)
we not only reuse intermediate data structures but also incrementalize the mining algorithm; (c)
we propose lattice search and sampling methods to deal with updated support and confidence, with
accuracy guarantees; and (d) to our knowledge, this work presents the first incremental mining
algorithms with relative boundedness and parallel scalability.

2 Batch Discovery of REEs
This section first reviews Rules for Entity Enhancing (REEs) introduced in [10, 32] (Section 2.1). It
then presents a SOTA batch algorithm for discovering REEs [29] (Section 2.2).

2.1 Collective Rules across Relations
We start with basic notations.
Preliminaries. We define REEs on a database schema R = (𝑅1, . . . , 𝑅𝑚), where 𝑅 𝑗 is a relation
schema 𝑅 𝑗 (𝐴1 : 𝜏1, . . . , 𝐴𝑘 : 𝜏𝑘), and each 𝐴𝑖 is an attribute of type 𝜏𝑖 . An instance D of R is
(𝐷1, . . . , 𝐷𝑚), where 𝐷𝑖 is a relation of 𝑅𝑖 , i.e., a set of tuples of 𝑅𝑖 (𝑖 ∈ [1,𝑚]).
Predicates. Predicates over schema R are defined as follows:

𝑝 ::= 𝑅(𝑡) | 𝑡 .𝐴 ⊗ 𝑐 | 𝑡 .𝐴 ⊗ 𝑠 .𝐵,
where ⊗ is one of =,≠, <,≤, >,≥. As in tuple relational calculus [4], (a) 𝑅 ∈ R, 𝑅(𝑡) is a relation atom
of R, and 𝑡 is a tuple variable bounded by 𝑅(𝑡); (b) 𝑡 .𝐴 is an attribute of 𝑡 if 𝑡 is bounded by 𝑅(𝑡) and
𝐴 is an attribute in 𝑅; (c) 𝑡 .𝐴 ⊗ 𝑐 is a constant predicate if 𝑐 is a value in the domain of 𝐴; and (d) in
𝑡 .𝐴 ⊗ 𝑠 .𝐵, tuple 𝑡 (resp. 𝑠) is bounded by 𝑅(𝑡) (resp. 𝑅′ (𝑠)), and𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′ have the same type.
REEs. A rule for entity enhancing (REE) 𝜑 over schema R is

𝜑 : 𝑋 → 𝑝0,

where 𝑋 is a conjunction of predicates over R, and 𝑝0 is a predicate over R whose tuple variables
also appear in 𝑋 . We refer to 𝑋 as the precondition of 𝜑 , and 𝑝0 as the consequence of 𝜑 .

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:5

Example 1:Consider a person relation with attributes id, country, area-code, city,Mstatus (marital
status), citizen, and the year when the tuple is recorded. Below are example REEs on person.
(1) 𝜑1 = person(𝑡1) ∧ person(𝑡2) ∧ 𝑡1.citizen = “US” ∧ 𝑡2.citizen = “Norway” → 𝑡1.id ≠ 𝑡2.id. It
says that no one can be a citizen of both the US and Norway, because Norway does not admit
dual citizenship. The rule helps us decide whether two persons match or not.
(2) 𝜑2 = person(𝑡1) ∧person(𝑡2) ∧ 𝑡1 .id = 𝑡2.id∧ 𝑡1.Mstatus = “single”∧ 𝑡2 .Mstatus = “Married” →
𝑡1.year ≤ 𝑡2.year. Intuitively, this rule says that the marital status of a person can change from
single to married, but not the other way around.
(3) 𝜑3 = person(𝑡) ∧𝑡 .country = “US”∧𝑡 .area−code = 215 → 𝑡 .city = “Philly”. It states the binding
between area-code and city.
(4) 𝜑4 = person(𝑝1)∧person(𝑝2)∧award(𝑎1)∧award(𝑎2)∧𝑝1 .id = 𝑎1.id∧𝑝2.id = 𝑎2.id∧𝑎1.year =
𝑎2.year∧𝑎1.award = “Golden Bear”∧𝑎2.award = “Gold Lion” → 𝑝1.id ≠ 𝑝2.id. It says that no one
won both film awards in the same year. It involves four tuple variables across two tables (person
and award). 2

Semantics. Consider an instance D of R. A valuation ℎ of tuple variables of 𝜑 = 𝑋 → 𝑝0 in D, or
simply a valuation of 𝜑 , is a mapping that instantiates each variable 𝑡 of 𝜑 with a tuple in D.
We say that ℎ satisfies a predicate 𝑝 , written as ℎ |= 𝑝 , by following the standard semantics of

first-order logic as in tuple relational calculus [4]; e.g., if 𝑝 = 𝑡 .𝐴 < 𝑠 .𝐵, ℎ maps 𝑡 to tuples 𝑡1 and 𝑠
to 𝑡2, and 𝑡1.𝐴 < 𝑡2 .𝐵, then ℎ |= 𝑝 . For precondition 𝑋 , ℎ |= 𝑋 if ℎ |= 𝑝 for all predicates 𝑝 in 𝑋 . We
write ℎ |= 𝜑 if ℎ |= 𝑋 implies ℎ |= 𝑝0.

An instance D of R satisfies 𝜑 , denoted by D |= 𝜑 , if for all valuations ℎ of tuple variables of 𝜑
in D, ℎ |= 𝜑 . We say that D satisfies a set Σ of REEs, denoted by D |= Σ, if for all 𝜑 ∈ Σ, D |= 𝜑 .
Remark. (1) In the general definition of REEs [32], machine learning (ML) models M can be
embedded as predicates, as long as the models return a Boolean. To simplify the discussion, here
we consider REEs without ML predicates. (2) The REEs considered in this paper subsume CFDs
and DCs as special cases [32, 34].
2.2 A Batch Algorithm for Rule Discovery
We next review batch discovery of REEs and its algorithm.
Support and confidence. We want to discover high-quality REEs. The quality of rules is typically
measured by the two criteria below.
Support. This is to quantify how often an REE 𝜑 = 𝑋 → 𝑝0 can be applied to a datasetD. We define
the support of 𝜑 in D as [30]:

supp(𝜑,D) = |spset(𝜑,D)|,
where spset(𝜑,D) is the set of all tuple pairs ⟨ℎ(𝑡0), ℎ(𝑠0)⟩ such that ℎ is a valuation of 𝜑 in D, 𝑡0
and 𝑠0 are tuple variables in 𝑝0, ℎ |= 𝑋 and ℎ |= 𝑝0. Note that spset(𝜑,D) is defined in terms of
tuples that instantiate the consequence 𝑝0 of 𝜑 , which is either a binary or unary predicate. This
generalizes support for CFDs, which are restricted to rules in a single table, whereas REEs span
multiple tables. While REE support can adapt to CFDs, the reverse does not hold. To simplify the
discussion, we consider binary 𝑝0; the notion of spset(𝜑,D) can be readily extended to unary 𝑝0.
It is known that supp(𝜑,D) has the anti-monotonicity property [30]. Given REEs 𝜑 : 𝑋 → 𝑝0

and 𝜑 ′ : 𝑋 ′ → 𝑝0 with the same consequence 𝑝0, we write 𝜑 ⪯ 𝜑 ′ if 𝑋 ⊆ 𝑋 ′, i.e., 𝜑 is less
restrictive than 𝜑 ′. Then for any instance D of R and REEs 𝜑 and 𝜑 ′, if 𝜑 ⪯ 𝜑 ′, then spset(𝜑 ′,D)
⊆ spset(𝜑,D) and supp(𝜑 ′,D) ≤ supp(𝜑,D).
Confidence. It measures how strong the association between precondition 𝑋 and consequence 𝑝0 is

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:6 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

for an REE 𝜑 = 𝑋 → 𝑝0. More specifically, the confidence of 𝜑 on D is a value in [0, 1] defined as:

conf (𝜑,D) = |spset(𝜑,D)|
|spset(𝑋,D)| ,

where spset(𝑋,D) is the set of tuple pairs satisfying all predicates in 𝑋 . The use of confidence
helps us tolerate noise, such that useful rules could still be discovered from the noisy data.
For an integer 𝜎 , an REE is 𝜎-frequent on D if supp(𝜑,D) ≥ 𝜎 . For a threshold 𝛿 , REE 𝜑 is

𝛿-confident on D if conf (𝜑,D) ≥ 𝛿 . In the sequel, we write conf (𝜑,D) and supp(𝜑,D) as conf (𝜑)
and supp(𝜑), respectively, when D is clear from the context.
Minimality. An REE 𝜑 : 𝑋 → 𝑝0 over 𝑅 is considered trivial if 𝑝0 ∈ 𝑋 . We focus on non-trivial
REEs.
An REE 𝜑 : 𝑋 → 𝑝0 is left-reduced on 𝐷 if 𝜑 is 𝜎-frequent and 𝛿-confident, and there exists no

REE 𝜑 ′ such that 𝜑 ′ ⪯ 𝜑 and 𝜑 ′ is also 𝜎-frequent and 𝛿-confident. In other words, no predicate in
𝑋 can be removed, i.e., the predicates are minimal.

A minimal REE 𝜑 on 𝐷 is a non-trivial and left-reduced REE.
Cover. Denote by Σ (𝜎,𝛿) the set of all 𝜎-frequent and 𝛿-confident REEs on dataset D. The set often
includes trivial rules, redundant predicates in 𝑋 and even redundant rules that are entailed by the
other rules in Σ (𝜎,𝛿) . Such rules make Σ (𝜎,𝛿) excessively large. To remove such useless rules, we
use the following notions.

A set Γ of REEs implies an REE 𝜑 , denoted by Γ |= 𝜑 , if for any dataset D of database schema R,
whenever D |= Γ, then D |= 𝜑 , i.e., 𝜑 is a logical consequence of Γ and is hence “redundant”.

A cover Σ of Σ (𝜎,𝛿) is a subset of Σ (𝜎,𝛿) such that (a) for each 𝜑 ∈ Σ (𝜎,𝛿) , Σ |= 𝜑 , i.e., Σ and Σ (𝜎,𝛿)
are logically “equivalent”; (b) for each 𝜑 ∈ Σ, Σ \ {𝜑} ̸|= 𝜑 , i.e., no REE in Σ can be entailed by the
other rules in Σ; in other words, no REEs in Σ are redundant.
The batch discovery problem. The problem is stated as follows.
◦ Input: A schema R, an instance D of R, and parameter 𝜆 = (𝜎, 𝛿).
◦ Output: A cover Σ of the set Σ (𝜎,𝛿) of all REEs that are both 𝜎-frequent and 𝛿-confident on
dataset D.

Here 𝜎 is a positive integer and 𝛿 ∈ [0, 1]. We refer to Σ as the set of 𝜆-bounded REEs on D.
Intuitively, the batch discovery problem aims to mine all high-quality REEs on dataset D subject to
predefined thresholds 𝜎 and 𝛿 for support and confidence, respectively.
Batch algorithm. We present the batch discovery algorithm in Figure 1, referred to as BatchMiner.
As a SOTA in REE mining [29], BatchMiner generates candidate REEs 𝜑 levewisely, adding one
predicate at a time. A costly step is to compute the support and confidence of 𝜑 and check whether
they are above 𝛿 and 𝜎 , respectively.

BatchMiner takes as input samples D𝑠 of dataset D, two sets RHS and P0 of predicates, and
thresholds for support 𝜎 and confidence 𝛿 . It is to discover a set Σ of REEs such that for each
𝜑 = 𝑋 → 𝑝0 in Σ, (1) 𝑝0 ∈ RHS, (2) 𝑋 ⊆ P0 and (3) 𝜑 is 𝜎-frequent and 𝛿-confident. Intuitively,
for an application, RHS is the set of consequence predicates of users’ interest, and P0 is the set of
predicates correlated to those in RHS, which can be identified via reinforcement learning (see [29]
for details). That is, BatchMiner discovers only those REEs relevant to the application.

BatchMiner initializes an empty set Σ. It builds position list indexes (PLI) [64] to speed up support
and confidence computation. For each distinct value Val of an attribute𝐴 in relation 𝑅, PLI maintains
a list of positions in the database where that value occurs: (𝑅,𝐴,Val) ↦→ List[Index]. Then for each
𝑝0 in RHS, procedure Expand is invoked to discover REEs that have 𝑝0 as the consequence, and add
the mined REEs into Σ. Finally, the cover Σ𝑐 of Σ is computed by eliminating redundant REEs in Σ.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:7

Algorithm BatchMiner
Input: R, D𝑠 , RHS, 𝑃0, 𝜎 and 𝛿 .
Output: A cover Σ𝑐 of the set of minimal 𝜎-frequent and 𝛿-confident REEs such that for each 𝜑 : 𝑋 → 𝑝0 in

Σ𝑐 , (1) 𝑝0 ∈ RHS; and (2) 𝑋 ⊆ P0.
1. Σ := ∅;
2. Build position list indexes (PLI) ;
3. for each 𝑝0 ∈ RHS do
4. Psel := ∅; Pre := P0;
5. Σ := Expand(D𝑠 , Psel, Pre, 𝑝0, 𝛿, 𝜎, Σ);
6. Σ𝑐 := computeCover(Σ);
7. return Σ𝑐 ;

Procedure Expand
Input: D𝑠 , Psel, Pre, 𝑝0, 𝛿, 𝜎 and the current set Σ of minimal REEs.
Output: An updated set Σ of minimal REEs.
8. Q := an empty queue; Q .add(⟨Psel, Pre⟩);
9. while Q ≠ ∅ do
10. ⟨Psel, Pre⟩ := Q .pop(); 𝜑 := Psel → 𝑝0;
11. if 𝜑 is minimal then
12. Σ := Σ ∪ {𝜑};
13. continue; // do not further expand
14. if supp(𝜑) ≥ 𝜎 then // Anti-monotonicity
15. for each 𝑝 ∈ Pre do // Add predicates from Pre to Psel
16. Q .add(⟨Psel ∪ {𝑝}, Pre \ {𝑝}⟩);
17. return Σ;

Fig. 1. Algorithm BatchMiner

Procedure Expand updates the set Σ with minimal REEs 𝜑 for consequence 𝑝0. It begins by
initializing an empty queue Q and adding the pair ⟨Psel, Pre⟩ to Q. While Q is not empty, it pops
a pair ⟨Psel, Pre⟩ and forms an REE 𝜑 = Psel → 𝑝0. If 𝜑 is minimal, it is added to Σ, and Expand
continues to the next iteration. If 𝜑 has support above 𝜎 , new candidate REEs are created by moving
one predicate 𝑝 from Pre to Psel, and Expand recursively mines longer REEs with larger confidence.
If none of the two conditions is met, the current search branch can be safely discarded by the
anti-monotonicity of REE support. The iteration continues until the queue Q becomes empty,
ensuring that all relevant REEs are explored and added to Σ. Finally, the updated set Σ is returned.
Complexity. BatchMiner runs in exponential time in the worst case. Indeed, there may be exponen-
tially many REEs in the size of D. However, optimization techniques, such as the space pruning
employed in BatchMiner and other strategies [25, 29, 30], have made it practical for real-world
application [10], for schema design and data cleaning. It is to further speed up the batch mining
process that we will develop incremental algorithms in Sections 4–6.

3 Incremental Discovery Problems
This section formulates the incremental rule discovery problems in response to parameter updates,
and presents an incrementalization approach towards the problems. We start with basic notations.
The incremental discovery problems. As remarked earlier, practitioners often need to adjust
parameters 𝜎 and 𝛿 in order to discover rules that meet their practical needs. In light of this, we
want to incrementally compute changes to Σ in response to adjusted support and confidence. There
are in fact three problems here.
◦ Input: Database schema R, dataset D of R, 𝜆 = (𝜎, 𝛿), the set Σ of 𝜆-bounded REEs on D, and

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:8 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

a (positive or negative) integer Δ𝜎 .
◦ Output: Updates Δ𝜎Σ = (ΔΣ+,ΔΣ−) to Σ such that the set of 𝜆𝜎 -bounded REEs on D is Σ ⊕ Δ𝜎Σ,
where 𝜆𝜎 = (𝜎+Δ𝜎, 𝛿), and ΔΣ+ (resp. ΔΣ−) includes REEs to be added to (resp. removed from) Σ.

When the support threshold is changed to 𝜎 + Δ𝜎 , the problem is to compute updates Δ𝜎Σ to Σ
such that Σ ⊕ Δ𝜎Σ is the set of (𝜎 + Δ𝜎, 𝛿)-bounded REEs on D, by reusing Σ as much as possible,
without recomputing all the (𝜎 +Δ𝜎, 𝛿)-bounded REEs from scratch. Here Δ𝜎 can be either positive
or negative; ΔΣ+ includes newly added REEs with smaller supports if Δ𝜎 < 0, and ΔΣ− consists of
“low-support” REEs removed from Σ if Δ𝜎 > 0.
Example 2: Continuing with Example 1, where the REEs are mined with an initial support 𝜎 = 100
and confidence 𝛿 = 80%. After analyzing REEs, the user decides to lower the support threshold 𝜎 to
50 to discover more rules. One of the newly mined REE is 𝜑5 = person(𝑡1)∧person(𝑡2)∧𝑡1.citizen =

“US” ∧ 𝑡2.citizen = “Japan” → 𝑡1.id ≠ 𝑡2.id. Similar to 𝜑1, this rule says that a person cannot be a
citizen of both the US and Japan, as Japan does not admit dual citizenship either. However, as there
are fewer records from Japan in the dataset, 𝜑5 was not mined until 𝜎 is lowered. 2

Similarly, we study the incremental problem in response to Δ𝛿 .
◦ Input: R, D, 𝜆 = (𝜎, 𝛿) and Σ as above, and a number Δ𝛿 ∈ [−1, 1] such that 𝛿 + Δ𝛿 ∈ [0, 1].
◦ Output: The updates Δ𝛿Σ = (ΔΣ+,ΔΣ−) to Σ such that the set of 𝜆𝛿 -bounded REEs on D is
Σ ⊕ Δ𝛿Σ, where 𝜆𝛿 = (𝜎, 𝛿 + Δ𝛿).

Here ΔΣ− includes low-confidence REEs to be removed from Σ (Δ𝛿 > 0), and ΔΣ+ collects REEs to
be added (Δ𝛿 < 0).

We also study the problem in response to both Δ𝜎 and Δ𝛿 .
◦ Input: R, D, 𝜆 = (𝜎, 𝛿) and Σ as above, a (positive or negative) integer Δ𝜎 , and a number
Δ𝛿 ∈ [−1, 1] such that 𝛿 + Δ𝛿 ∈ [0, 1].

◦ Output: The updates Δ𝜆Σ = (ΔΣ+,ΔΣ−) to Σ such that the set of 𝜆′-bounded REEs on D is
Σ ⊕ Δ𝛿Σ, where 𝜆′ = (𝜎 + Δ𝜎, 𝛿 + Δ𝛿).

Incrementalization. We approach the problems above by following the incrementalization ap-
proach of [33, 35]. Incrementalization is to pick a batch discovery algorithm A that has been
verified effective, and deduce an incremental algorithm AΔ from A, by reusing the original logic
and data structures of A as much as possible.
More formally, denote an instance of the rule discovery problem as 𝐼 = (D, 𝜆), and the set of

𝜆-bounded REEs discovered by batch algorithmA on datasetD asA(𝐼). The incremental algorithm
AΔ is deduced from A with the following guarantees:
(1) Correctness: Given an instance 𝐼 and updates Δ𝐼 to 𝐼 , it computes updates ΔΣ to the outputA(𝐼)
such that A(𝐼 ⊕ Δ𝐼) =A(𝐼) ⊕ ΔΣ, which is precisely the new output of A on the updated input
𝐼 ⊕ Δ𝐼 . Here Δ𝐼 denotes updates to the parameter (i.e., Δ𝜆).
(2) Efficiency: Algorithm AΔ is bounded relative to A [33]. That is, the size of the data inspected by
AΔ is a function in the size |AFF| of the affected area AFF, not in (possibly big) |D|. To see how AFF
is defined, for an instance 𝐼 = (D, 𝜆) of the discovery problem, denote by 𝐼 (A,𝜆) the data accessed
by A for discovering the set Σ of 𝜆-bounded REEs, including the part of D inspected by A, the
collection of candidate REEs generated, and auxiliary structure used by A. Then for updates Δ𝐼
to 𝐼 , AFF denotes the difference between (𝐼 ⊕ Δ𝐼) (A,𝜆) and 𝐼 (A,𝜆) , i.e., the difference in the data
inspected by the batch algorithm A for computing A(𝐼 ⊕ Δ𝐼) and A(𝐼).
Intuitively, AFF is the part of the data that is necessarily checked by the batch algorithm A in

response to Δ𝐼 , and hence, |AFF| is the inherent updating cost of incrementalizing A. When |Δ𝐼 | is
small, |AFF| is often small as well, and thus AΔ is often faster than A; in other words, AΔ aims to

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:9

...

σ1 = 0.9

σ2 = 0.8
AFF

Pruned

AFF

Examined

Continue

Fig. 2. AFF on 𝜎 changes, i.e., the difference in the search lattice examined for support thresholds 𝜎1 and 𝜎2.

minimize unnecessary recomputation. Moreover, when practitioners get used to algorithm A and
understand how it behaves w.r.t. different inputs, they want to stick to it. Thus we incrementalize
A and retain its logic and data structures.

4 Incremental Algorithm for Δ𝜎
This section develops an incremental discovery algorithm for REEs in response to support updates
Δ𝜎 , denoted by IncMiner𝜎 . We develop IncMiner𝜎 by incrementalizing BatchMiner following [33,
35], such that IncMiner𝜎 is bounded relative to BatchMiner.
We start by identifying the affected area AFF.

AFF. Consider the difference between the set of candidate REEs explored by BatchMiner given
two different support thresholds, 𝜎 and 𝜎 + Δ𝜎 , denoted by ΣΔ𝜎 . When Δ𝜎 < 0, ΣΔ𝜎 is defined as:

ΣΔ𝜎 = {𝜑 | 𝜎 + Δ𝜎 ≤ supp(𝜑) ≤ 𝜎}. (1)
This is evident in BatchMiner, where 𝜎 is examined at line 14 (Figure 1). Here, candidate REEs 𝜑
with support below 𝜎 are discarded by the anti-monotonicity of support. By lowering the support
threshold to 𝜎 + Δ𝜎 , we continue exploring these REEs by adding more predicates to 𝜑 (line 15).
The additional REEs explored by it constitute precisely ΣΔ𝜎 . For Δ𝜎 > 0, ΣΔ𝜎 is defined similarly.

Figure 2 visualizes this. It constitutes a search lattice, where each node is an examined REE,
and an edge 𝜑𝑎 → 𝜑𝑏 means that 𝜑𝑏 is a direct expansion of 𝜑𝑎 (by adding one predicate to its
precondition 𝑋). Given two support thresholds 𝜎1 > 𝜎2, denote by Σ1 and Σ2 the set of REEs
examined by BatchMiner w.r.t. 𝜎1 and 𝜎2, respectively. By the anti-monotonicity of REE support,
Σ1 ⊆ Σ2. AFF thus includes the difference ΣΔ𝜎 = Σ2 \Σ1, as highlighted by the set of nodes between
the two horizontal dashed lines in Figure 2.

In addition, AFF includes the portion of dataD examined during the computation of support and
confidence for each 𝜑 in ΣΔ𝜎 . Since D is preprocessed into a PLI, we define AFF in terms of PLI:

AFFΔ𝜎 = {𝑃 (𝜑) | 𝜑 ∈ ΣΔ𝜎 } (2)
Here 𝑃 (𝜑) is the subset of PLI inspected by the batch algorithm BatchMiner for computing 𝜑’s
support and confidence.
Deducing algorithm IncMiner𝜎 . We next develop IncMiner𝜎 , shown in Figure 3, using feasible
states and auxiliary structures.
Feasible states. As shown in Figure 1, BatchMiner primarily operates by iteratively updating two
state variables: the set Σ of discovered 𝜆-bounded REEs and the set𝑄 of candidate REEs to be further
expanded. Denote by 𝑓 the update procedure outlined from lines 10 to 16 in Figure 1. BatchMiner
continuously applies 𝑓 to Σ and 𝑄 until 𝑄 becomes empty, at which point it returns Σ𝑐 .
Upon support update Δ𝜎 , an incrementalization strategy is to reset the state variables Σ and 𝑄

into feasible states aligned with the updated support parameter. Then the solution can be obtained
by iteratively applying an update procedure 𝑓Δ, which reuses most part of the step function 𝑓 in
BatchMiner, to Σ and 𝑄 .

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:10 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

Input: Database schema R, dataset D, 𝜆 = (𝜎, 𝛿), the set Σ of 𝜆-bounded REEs on D, the set of pruned REEs
in prior mining process Σ<𝜎 , a (positive or negative) integer Δ𝜎 .

Output: The set ΔΣ+ (resp. ΔΣ−) of REEs to be added to (resp. removed from) Σ, and the set of pruned REEs
Σ<𝜎 ′ with support lower than 𝜎 + Δ𝜎 .

1. if Δ𝜎 > 0 then
2. return (∅, {𝜑 ∈ Σ | supp(𝜑) < 𝜎 + Δ𝜎}, Σ<𝜎);
3. else // Δ𝜎 < 0
4. ΔΣ+ := ∅; Σ<𝜎 ′ := Σ<𝜎 ;
5. for each 𝑝0 ∈ RHS do
6. 𝑄 := {𝜑 ∈ Σ<𝜎 | supp(𝜑) ≥ 𝜎 + Δ𝜎 ∧ 𝜑.𝑝0 = 𝑝0};
7. (ΔΣ+, Σ<𝜎 ′) := IncExpand(D, 𝑄, 𝑝0, 𝛿, 𝜎 + Δ𝜎,ΔΣ+, Σ<𝜎 ′);
8. return (ΔΣ+, ∅, Σ<𝜎 ′);
Procedure IncExpand
Input: D𝑠 , 𝑄0, 𝑝0, 𝛿, 𝜎 , the current set Σ of 𝜆-bounded REEs, and the current set Σ<𝜎 of pruned REEs.
Output: An updated set Σ of minimal REEs and updated Σ′

<𝜎 .
9. 𝑄 :=𝑄0
10. while 𝑄 ≠ ∅ do

... // same as lines 10-13 in Figure 1.
11. if supp(𝜑) ≥ 𝜎 then

... // update Q as in lines 15-16 in Figure 1.
12. else // supp (𝜑) < 𝜎
13. Σ′

<𝜎 := Σ<𝜎 ∪ {𝜑};
14. return (Σ, Σ′

<𝜎);

Fig. 3. Algorithm IncMiner𝜎

Denote by Σ𝑡 and 𝑄𝑡 the status of variable Σ and 𝑄 at the 𝑡𝑡ℎ iteration, respectively. An element
𝜑 in Σ𝑡 is feasible if it is 𝜆-bounded.

An element (𝑃sel, 𝑃re) in 𝑄𝑡 is feasible if (1) supp(𝑃sel → 𝑝0)≥𝜎 ; and (2) there exists no subset
𝑋 ′ ⊂ 𝑃sel such that conf (𝑋 ′ → 𝑝0) ≥ 𝛿 . Here condition (2) ensures the minimality of the mined
REEs. We say that state variable Σ𝑡 (resp. 𝑄𝑡) is feasible if all elements in Σ𝑡 (resp. 𝑄𝑡) are in a
feasible state.
Auxiliary data structures. In order to recover the search queue Q into a feasible state, IncMiner𝜎
keeps the set of candidate REEs that are pruned due to insufficient support, denoted as Σ<𝜎 . Indeed,
these pruned REEs would become valid, i.e., they may meet a smaller support threshold (when
Δ𝜎 < 0) and should be explored.
IncMiner𝜎 . Using feasible elements in Σ and 𝑄 , and auxiliary structures Σ<𝜎 , IncMiner𝜎 separates
two cases as shown in Figure 3.
(1) When Δ𝜎 > 0. By the 𝜆-boundedness and minimality guarantee of BatchMiner, each REE 𝜑 in
the output Σ of BatchMiner with supp(𝜑) ≥ 𝜎 + Δ𝜎 is also 𝜆𝜎 -bounded and minimal. Thus, the set
ΔΣ of minimal 𝜆𝜎 -bounded REEs can be obtained by directly filtering REEs in Σ (line 2), without
the need for further expanding.
(2) When Δ𝜎 < 0, REEs pruned in prior mining with lower 𝜎 might become a feasible element in
the search queue. Thus, these rules are put into 𝑄 (line 6). IncMiner𝜎 incrementalizes procedure
Expand to IncExpand, reusing most steps in Expand (lines 10-16 in Figure 1), except that at lines
12-13, upon discovering REEs with support lower than threshold 𝜎 , instead of discarding them as in
BatchMiner, these REEs are put into the auxiliary Σ′

<𝜎 for incremental discovery in future updates.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:11

Example 3: Continuing with Example 2, Figure 2 illustrates the flow of IncMiner𝜎 . When support
𝜎 = 100, some incomplete REEsmight get pruned due to insufficient support, e.g., 𝜑 ′

5 = person(𝑡1) ∧
person(𝑡2) ∧ 𝑡2.citizen = “Japan” → 𝑡1 .id ≠ 𝑡2.id; it was pruned due to its low support at 80. By
IncMiner𝜎 , 𝜑 ′

5 is put into Σ<𝜎 .
When 𝜎 is reduced to 50, IncMiner𝜎 starts with the set of pruned REEs whose support lies

between 50 and 100 (marked as square boxes), and continues expanding them until all newly
qualified ones are found or the support drops below the new 𝜎 = 50. Note that the newly examined
REEs are exactly those in AFF defined above.
By IncExpand in Figure 3, new REEs are mined by adding new predicates to REEs in Σ<𝜎 .

For instance, adding 𝑡1 .citizen = “US” to the precondition of 𝜑 ′
5 yields 𝜑5 in Example 2. Hence,

incremental mining can uncover additional rules by lowering threshold 𝜎 . 2

Correctness. When Δ𝜎 > 0, i.e., support threshold increases, no further search is needed, because
by the anti-monotonicity of REE support, the newly feasible REEs are already a subset of previous
mining results, i.e., Σ (𝜎+Δ𝜎,𝛿) ⊆ Σ (𝜎,𝛿) . On the other hand, when Δ𝜎 < 0, i.e., support threshold
decreases, IncMiner𝜎 is a natural continuation of its batch counterpart BatchMiner. It resumes the
search by putting all the newly feasible candidate REEs from Σ<𝜎 into the search queue 𝑄 . Starting
from the reset queue 𝑄 , the set of REEs explored by IncMiner𝜎 is precisely ΣΔ𝜎 (Equation 1).
Relative boundedness. One can see that IncMiner𝜎 inspects only those candidate REEs in ΣΔ𝜎 and
their associated data (including auxiliary structures), which are confined in the affected area AFF
by Δ𝜎 (see AFF above). Moreover, the computation of cover conducts necessary work for updated
set of REEs, which involves only REE implication but not dataset D; it has to be performed by any
incrementalization of BatchMiner. Putting these together, one can verify that IncMiner𝜎 is bounded
relative to BatchMiner, i.e., its time cost is measured by a function in |AFF|, not in possibly big |D|.
Space overhead. The additional intermediate states Σ<𝜎 is exponential in the predicate space |𝑃 |,
denoted as 𝑂 (2 |𝑃 |) (the set of all REEs constructed using predicates in 𝑃). This is the same as the
space complexity of BatchMiner, since its output, i.e., the set Σ of 𝜆-bounded REEs, is also in𝑂 (2 |𝑃 |).
This said, IncMiner𝜎 is much faster than BatchMiner in practice as will be seen in Section 7.

5 Incremental Algorithm for Δ𝛿
This section develops an incremental REE discovery algorithm, denoted by IncMiner𝛿 , in response
to updates to confidence threshold 𝛿 . The algorithm is more challenging than its counterpart for
Δ𝜎 since as opposed to support, confidence does not have the anti-monotonicity. To take up the
challenge, we first develop a sampling strategy to reduce the search space (Section 5.1). We then
deduce IncMiner𝛿 and show its relative boundedness (Section 5.2).
5.1 Sampling for Search Lattice
Note that in Algorithm 1, the search for a candidate REE 𝜑 terminates under conditions: (1) 𝜑 is
minimal 𝜆-bounded; or (2) 𝜑 has support lower than 𝜎 . Denote by Σ (𝜎,𝛿) the set of (𝜎, 𝛿)-bounded
REEs. Now suppose that the confidence threshold 𝛿 is increased to 𝛿 ′ (Δ𝛿 > 0). Then some of the
REEs in Σ (𝜎,𝛿) may no longer be qualified, and a continuation of the search down the lattice has to be
performed until either termination condition is met. As 𝜎 is unchanged, lattice pruned by condition
2 (insufficient support) remains pruned. Thus only the successors of REEs in Σ (𝜎,𝛿) are expanded.
AFF. To see AFF, let 𝜑𝑏 ≥ 𝜑𝑎 denote that 𝜑𝑏 is a successor of 𝜑𝑎 in the search lattice. Then we
define the difference of REEs examined by two confidence thresholds 𝛿 and 𝛿 ′ = 𝛿 + Δ𝛿 as follows:

Σ⪰𝛿 = {𝜑 | 𝜑 ≥ 𝜑 ′ ∧ 𝜑 ′ ∈ Σ (𝜎,𝛿) },
ΣΔ𝛿 = {𝜑 ∈ Σ⪰𝛿 | conf (𝜑) ≤ 𝛿 ′ ∧ supp(𝜑) ≥ 𝜎}.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:12 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

...

AFF

Sample

Fig. 4. Sample search lattice. The full lattice can be recov-
ered by enumerating neighbors of each sampled REE.

K=2
K=1

pred1 pred2 pred3

K=3

Sample

Fig. 5. Sample coverage with different radius 𝐾 .

Here Σ⪰𝛿 includes all successors of 𝜆-bounded REEs in Σ (𝜎,𝛿) , and ΣΔ𝛿 denotes the precise difference
of REEs explored by BatchMiner with different confidence thresholds 𝛿 and 𝛿 ′: successors of
previously mined REEs are only examined if they have support above 𝜎 and confidence below 𝛿 ′.
The set of difference in REEs is defined symmetrically for Δ𝛿 < 0. Figure 4 visualizes the AFF for
the case where 𝛿 is decreased from 0.9 to 0.8, where the two horizontal dashed lines represent the
search frontier when 𝛿 = 0.8 and 0.9, respectively. Thus ΣΔ𝛿 is the area between the two lines.
Similar to AFF for support updates, AFF for confidence updates can be represented by the

underlying PLI as follows:
AFFΔ𝛿 = {𝑃 (𝜑) | 𝜑 ∈ ΣΔ𝛿 }.

Complications. From the analysis above it follows that when confidence increases, IncMiner𝛿 is a
continuation of BatchMiner. It only needs the mined rules from prior iteration to continue.

However, the problem gets much more challenging when confidence decreases, where IncMiner𝛿
needs to examine predecessors of the mined REEs, by reverting the mining process of BatchMiner.
Intuitively, some REEs examined in the upper layers of the search lattice but deemed insufficient
confidence now become sufficient under the new confidence threshold 𝛿 ′. IncMiner𝛿 has to traverse
back up the search lattice to recover such newly valid REEs.

Traversing up the search lattice is tricky because the confidence of REEs exhibits no monotonicity
w.r.t. the lattice layer (adding and removing predicates from preconditions). This means that
without additional information, in order to recover the minimal valid REEs, one has to examine all
predecessors of all REEs in Σ (𝜎,𝛿) and Σ<𝜎 (i.e., REEs pruned due to insufficient support), ending
up with the same complexity as rerunning BatchMiner.
Example 4: Consider an example Person relation in Table 1, which consists of five tuples (𝑡1-
𝑡5), and a candidate rule 𝜑𝑎 : person(𝑡1) ∧ person(𝑡2) ∧ 𝑡1.citizen = 𝑡2.citizen → 𝑡1.country =

𝑡2.country, where conf (𝜑𝑎,D) =
|spset(𝜑𝑎,D) |
|spset(𝑋,D) | = 3

6 = 0.5. Adding a predicate 𝑡1 .area-code =

𝑡2.area-code to precondition 𝑋 in 𝜑𝑎 yields a new rule 𝜑𝑏 : person(𝑡1) ∧ person(𝑡2) ∧ 𝑡1.citizen =

𝑡2.citizen ∧ 𝑡1.area-code = 𝑡2.area-code → 𝑡1.country = 𝑡2 .country, with increased confidence
conf (𝜑𝑏,D) =

|spset(𝜑𝑏 ,D) |
|spset(𝑋,D) | = 3

3 = 1.0. However, adding another predicate 𝑡1.city = 𝑡2.city

to 𝑋 in 𝜑𝑎 yields another rule 𝜑𝑐 : person(𝑡1) ∧ person(𝑡2) ∧ 𝑡1.citizen = 𝑡2.citizen ∧ 𝑡1.city =

𝑡2.city → 𝑡1.country = 𝑡2 .country, with lower confidence conf (𝜑𝑐 ,D) =
|spset(𝜑𝑐 ,D) |
|spset(𝑋,D) | = 0

1 = 0.
These demonstrate that adding different predicates to a rule can either increase or decrease its
confidence, thus showing that confidence exhibits no monotonicity w.r.t. predicate addition. 2

Summarizing search lattice via sampling. To cope with the new challenges, we use new data
structures. To avoid recomputing confidence for all REEs in the upper layers of the search lattice,
we summarize some information of the search lattice such that only relevant REEs are examined
and reevaluated for confidence. Storing the entire search lattice is costly, taking 𝑂 (2 |𝑃 |) space,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:13

id country area-code city Mstatus citizen year
𝑡1 United States 840 New York married US 2010
𝑡2 United States 840 Boston married US 2020
𝑡3 United States 840 Boulder single US 2012
𝑡4 Japan 392 New York single US 2015
𝑡5 Japan 392 Tokyo single Japan 2018

Table 1. An example of Person relation

where |𝑃 | is the number of all predicates. Instead, we sample representative nodes in the search
lattice to reduce storage overhead, while maintaining the ability to recover the full lattice. This is
crucial for ensuring the correctness of IncMiner𝛿 , i.e., it can recover all REEsmined by BatchMiner,
and is maintained by introducing the coverage constraint in the sampling problem defined below.
Intuitively, although the confidence of REEs has no monotonicity w.r.t. predicate addition, it

still exhibits some degree of continuity. That is, the difference between confidence of similar REEs
tends to be small. Such proximity enables succinct summarization of the search lattice by grouping
similar REEs together.

Figure 4 depicts the summarization of a search lattice. The dashed circle indicates for a sampled
REE𝜑 , the set of nearby REEs that can be recovered from𝜑 . The neighboring nodes can be recovered
by enumerating REEs that share the same𝐾 predicates with 𝜑 , where𝐾 is a parameter to control the
coverage of the sample. Figure 5 illustrates the coverage of a sample with varying 𝐾 . When 𝐾 = 1,
the sample covers REEs at the same level with common predecessor pred1. The coverage increases
as 𝐾 increases: when 𝐾 = 2, it covers the ones with common predecessors either pred1 or pred2.

More specifically, each sampled node is associated with three elements (𝜑, 𝐾,maxConf), where 𝜑
is the sampled REE,𝐾 is the sample coverage radius as defined above, andmaxConf is the maximum
confidence of REEs covered by the sample.

The sampling speeds up the process as each sampled node summarizes a group of nodes with a
maximum confidence (maxConf). If confidence threshold 𝛿 > maxConf, then the sampled group
can be skipped altogether, saving the enumeration and confidence calculation, the most costly part
since it needs to scan the underlying dataset. For instance, consider the AFF region enclosed by two
horizontal dashed lines in Figure 4: samples further above the AFF region should have a confidence
range below 𝛿 ′ (samples near AFF border may cover some REEs in AFF). Thus, they can be skipped
during incremental mining, eliminating redundant computation.
Sampling as an optimization problem. Denote by L the search lattice. The sampling problem
is to find a subset P ⊆ L, and the associated radius 𝐾𝑝 for each 𝑝 ∈ P, such that the following
constraints are satisfied: (a) coverage constraint to ensure that all nodes in the lattice L are covered
by at least one sampled node:

∀𝑣 ∈ L, ∃𝑝 ∈ P, 𝑣 ∈ 𝑁 (𝑝, 𝐾𝑝),
where 𝑁 (𝑝, 𝐾𝑝) denotes the set of nodes covered by the sampled node 𝑝 under radius 𝐾𝑝 , and (b)
storage budget constraint that limits the maximum number of sampled nodes: |P | ≤ 𝐵.

The objective is to minimize the average radius of sampled nodes: 1
|𝑃 |

∑
𝑝∈P 𝐾𝑝 , which minimizes

the computation required to evaluate the confidence of neighboring nodes of each sampled node.
Proposition 1: The decision version of the optimization problem of sampling the search lattice, as
formulated above, is NP-complete. 2

Proof sketch: The upper bound is immediate. The lower bound is verified by reduction from
Set Cover, which is NP-complete [48]. Set Cover is to decide, given a universe𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}
of 𝑛 elements, a collection of subsets S = {𝑆1, 𝑆2, . . . , 𝑆𝑚} such that

⋃𝑚
𝑖=1 𝑆𝑖 = 𝑈 , and a budget 𝑘 ,

whether there exists a sub-collection S′ ⊆ S with |S′ | ≤ 𝑘 that covers𝑈 . Given an instance of Set

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:14 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

Procedure IncExpand𝛿
Input: D𝑠 , Q0, 𝑝0, 𝛿, 𝜎 , the current set Σ of 𝜆-bounded REEs, and the set 𝑆 of sampled lattice nodes.
Output: An updated set Σ of minimal REEs and updated lattice sample 𝑆 ′.
1. 𝑆 ′ := 𝑆 ;
... // same as lines 8-13 in Figure 1.

2. if supp(𝜑) ≥ 𝜎 then
3. if 𝜑 is not covered by 𝑆 ′ then
4. 𝑆 ′ := 𝑆 ′ ∪ {(𝜑, 𝐾, [conf (𝜑), conf (𝜑)])};
5. else
6. Pick the first element 𝑠 in 𝑆 ′ such that 𝑠 covers 𝜑 ;
7. 𝑚′ =max(𝑠 .maxConf, conf (𝜑));
8. 𝑆 ′ := 𝑆 ′ \ {𝑠} ∪ {(𝑠 .𝜑, 𝑠 .𝐾,𝑚′)};

... // update Q as in lines 15-16 in Figure 1.
9. return (ΔΣ, 𝑆 ′);

Fig. 6. Subroutine IncExpand𝛿 with greedy heuristic

Cover, we construct a lattice L, a storage budget 𝐵, a coverage radius 𝐾𝑝 = 1 for each node 𝑝 ∈ L.
We show that there exists a cover S′ ⊆ S with |S′ | ≤ 𝑘 that covers𝑈 for Set Cover if and only if
there exists a set of sampled nodes P ⊆ L that satisfies the coverage and budget constraints. The
full proof is in [1]. 2

Approximation with greedy heuristic. In light of the intractability, we develop a heuristic
sampling procedure in Figure 6, which is embedded in the IncExpand𝛿 subroutine. This procedure
reuses most parts of the Expand subroutine in Figure 1, but it maintains the set of sampled lattice
nodes using a greedy heuristic.
For each examined REE 𝜑 , if it is not yet covered by any samples in 𝑆 ′, it is constructed into

a new sample (line 4). This ensures that IncMiner𝛿 can reconstruct the full search lattice by
enumerating neighboring REEs covered by all samples, a key property for establishing IncMiner𝛿 ’s
completeness (see Proposition 2). The radius parameter 𝐾 is fixed during runtime to further reduce
the computation overhead (see Section 7). Otherwise, we pick the first sample 𝑠 in 𝑆 such that 𝑠
covers 𝜑 , and update maximum confidence of sample 𝑠 . Although 𝜑 can be covered by multiple
samples, updating the confidence range of one covering sample suffices to guarantee that 𝜑 will be
discovered when it becomes valid as 𝛿 decreases.
Example 5:Consider anREE𝜑 with conf = 0.8, and a covering sample 𝑠 with confRange = [0.5, 0.6].
We update 𝑠’s confidence range to [0.5, 0.8]. When 𝛿 decreases to 𝛿 ′ = 0.7, 𝜑 becomes valid. Since
𝑠’s updated confidence range covers 𝛿 ′, all neighbors of 𝑠 will be enumerated for newly valid REEs,
including 𝜑 . Note that this discovery process of 𝜑 does not rely on other covering samples. 2

5.2 Incremental algorithms in Response to Δ𝛿

We first develop IncMiner𝛿 with completeness guarantee, i.e., a complete cover of Σ (𝜎,𝛿) is mined.
We then give an approximate algorithm to improve efficiency while providing accuracy guarantee.

As shown in Figure 7, IncMiner𝛿 utilizes the sampled lattice 𝑆 . Similar to IncMiner𝜎 , it also
separates two cases.
(1) When Δ𝛿 > 0, REEs in Σ with insufficient confidence are put into ΔΣ− for removal (line 3).
For each predicate 𝑝0 in RHS, the relevant REEs in ΔΣ− are put back into the search queue 𝑄 for
further expansion (lines 5-6), using IncExpand𝛿 given in Figure 6.
(2) When Δ𝛿 < 0, IncMiner𝛿 traverses the search lattice from bottom to top (line 9). The rationale
is that when Δ𝛿 is small, the newly valid REEs should be close to those minded REEs of Σ in the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:15

Input: Schema R, dataset D, 𝜆 = (𝜎, 𝛿), the set Σ of 𝜆-bounded REEs, search lattice samples 𝑆 , Δ𝛿 ∈ [−1, 1]
such that 𝛿 + Δ𝛿 ∈ [0, 1].

Output: ΔΣ+,ΔΣ− , and the updated search lattice samples 𝑆 ′.
1. ΔΣ+ := ∅; ΔΣ− := ∅; 𝑆 ′ := 𝑆 ;
2. if (Δ𝛿 > 0) then
3. ΔΣ− := {𝜑 ∈ Σ | conf (𝜑) < 𝛿 + Δ𝛿};
4. for each 𝑝0 ∈ RHS do
5. 𝑄 := {𝜑 ∈ ΔΣ− | 𝜑.𝑝0 = 𝑝0};
6. (ΔΣ+, 𝑆 ′) := IncExpand𝛿 (D, 𝑄, 𝑝0, 𝛿 + Δ𝛿, 𝜎,ΔΣ+, 𝑆 ′);
7. return (ΔΣ+,ΔΣ−, 𝑆 ′);
8. else // Δ𝛿 < 0
9. for each 𝑠 ∈ 𝑆 do // Enumerate 𝑆 by size in descending order
10. if 𝑠 .confRange.max ≥ 𝛿 + Δ𝛿 then
11. ΔΣ+ := ΔΣ+ ∪ {𝜑 ∈ Neighbor(𝑠) | conf (𝜑) ≥ 𝛿 + Δ𝛿};
12. return (ΔΣ+, ∅, 𝑆 ′);

Fig. 7. Algorithm IncMiner𝛿

search lattice. More specifically, for each sample 𝑠 in 𝑆 , if its confidence range covers the new
threshold 𝛿 + Δ𝛿 , then its neighbors are enumerated for newly valid REEs (lines 10-11).
Example 6: Continuing with Example 2, the data analyst now decides to lower the confidence
threshold 𝛿 from 0.9 to 0.8. As shown in Figure 4, when 𝛿 decreases, IncMiner𝛿 examines all the
sampled REEs whose confidence range covers the new threshold 0.8. One such sample, 𝜑𝑠 , is
highlighted by a dashed circle Figure 4, with a confidence range between 0.7 and 0.9. Suppose
𝜑𝑠 = person(𝑡) ∧ 𝑡 .status = “working” ∧ 𝑡 .country = “Norway” → 𝑡 .age ≤ 66.

By enumerating 𝜑𝑠 ’s neighbors with radius 1, i.e., substituting one of the predicates in 𝜑𝑠 ’s pre-
condition, we find 𝜑6 = person(𝑡)∧𝑡 .status = “working”∧𝑡 .country = “UK” → 𝑡 .age≤66. This rule
indicates that if a person is working and resides in the UK, then s/he is likely to be under 66, which
is the State Pension age in the UK. Other relevant REE samples are examined in the same way. 2
Recall that in the sampling scheme, all sampled nodes collectively cover the full lattice, which

implies the completeness of IncMiner𝛿 , as stated in Proposition 2. In other words, IncMiner𝛿
guarantees to discover all newly valid REEs on confidence update.
Proposition 2: Denote by Σ𝑠 the set of sampled vertices that cover the search lattice under threshold
𝜎 and 𝛿 , and by 𝛿 ′ the decreased confidence. Then for every minimal (𝜎, 𝛿 ′)-bounded REE 𝜑 , there
exists a sample in Σ𝑠 that covers 𝜑 . 2

Proof sketch. (1) By BatchMiner and IncMiner𝛿 , every 𝜎-frequent REE is either directly traversed
by IncExpand𝛿 , or has a predecessor in the search lattice that is (𝜎 , 𝛿)-bounded and is traversed.
(2) For every minimal (𝜎, 𝛿 ′)-bounded REE 𝜑 , by the definition of minimality, and that 𝛿 ′ < 𝛿 , none
of its predecessor can be (𝜎, 𝛿)-bounded; therefore it is directly traversed by IncExpand𝛿 . (3) For
every traversed node, IncExpand𝛿 ensures that it is either covered by an existing sample within
a predefined radius 𝐾 , or becomes a new sample itself. (4) Thus, each minimal (𝜎, 𝛿 ′)-bounded
REEs is covered by at least one sample in Σ𝑠 , proving the proposition. 2

Remarks. Proposition 2 relies on two properties of the batch mining algorithm: (1) it is deterministic;
and (2) it does not approximate the mining results, i.e., the use of optimizing heuristics that
prematurely prune some parts of the search lattice rendering incomplete mining results w.r.t.
support and confidence requirements. BatchMiner satisfies both, whereas other variants of REE

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:16 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

Input: Same input as IncMiner𝛿 in Figure 7, and recall 𝛽 .
Output: Same output as IncMiner𝛿 .

... // same as lines 1-7 in Figure 7.
8. else // Δ𝛿 < 0
9. 𝑁 := Σ𝑠∈𝑆 [1 − 𝑠 .𝐶𝐷𝐹 (𝛿 + Δ𝛿)] × 𝑠 .𝑁 ; // Num. of valid REEs.
10. FN := 0; FNmax := 𝑁 × (1 − 𝛽); 𝑆≈ := ∅;
11. for each 𝑠 ∈ 𝑆 do
12. 𝑛 := [1 − 𝑠 .CDF(𝛿 + Δ𝛿)] × 𝑠 .𝑁 ;
13. if FN + 𝑛 ≤ FNmax then
14. FN := FN + 𝑛;
15. else 𝑆≈ := 𝑆≈ ∪ {𝑠};
16. for each 𝑠 ∈ 𝑆≈ do // Enumerate 𝑆≈ by size in descending order.

... // Same as lines 10-11 in Figure 7.
17. ΔΣ+ := {𝜑 ∈ ΔΣ+ | minimize(𝜑)};
18. return (ΔΣ+, ∅, 𝑆)

Fig. 8. IncMiner≈
𝛿
when Δ𝛿 < 0 with recall guarantee.

mining (e.g., [25, 29, 30]) do not. Ensuring the completeness while incrementalizing these variants
remains an important direction for future work.
Algorithm IncMiner≈

𝛿
. We show how to relax IncMiner𝛿 to further improve efficiency, while

guaranteeing recall bound 𝛽 , i.e., at least 𝛽% of REEsmined by the complete algorithm are discovered
in the probabilistic version. The main overhead of IncMiner𝛿 is that, when Δ𝛿 < 0, it has to
recompute confidence for a lot of samples and their neighboring REEs. To reduce the cost, the
neighbor information of each sampled REE need to be summarized more precisely.

To speed it up, for each sampled REE, instead of confRange, we keep a CDF (cumulative distribu-
tion function) of the confidences of the neighboring REEs, where CDF(𝛿 ′) = 𝑃𝑟 .(conf ≤ 𝛿 ′), i.e.,
the fraction of neighboring REEs whose confidence is below 𝛿 ′. Intuitively, given a sampled vertex
𝑠 , if only few neighboring REEs have sufficient confidence, i.e., 𝑃𝑟 .(conf ≤ 𝛿 ′) ≲ 1, we can skip
enumerating neighbors of 𝑠 without losing too many valid REEs.
However, the reverse is not true. When 𝑃𝑟 (conf ≤ 𝛿 ′) ≳ 0, i.e., most accounted neighboring

REEs have high confidence, we cannot simply add all neighbors of 𝑠 into ΔΣ+. Recall from Figure 6
that for sampling efficiency, the CDF of each sample REE only represents a subset of neighboring
REEs. Therefore, directly adding all neighbnors can lead to unpredictable and high false positives.
To ensure that the approximation does not break recall guarantee, we keep FN for the number

of forgone valid REEs. Denote by 𝑁 the number of valid REEs; then recall can be expressed as
recall = 1 − 𝑁−FN

𝑁
. Substituting these for constraints recall ≥ 𝛽 , we maintain FN ≤ 𝛽 × 𝑁 , an

invariant in incremental mining.
Given these, we develop algorithm IncMiner≈

𝛿
in Figure 8. It first computes the number of all valid

REEs under new confidence threshold 𝛿 + Δ𝛿 by summing up the number of valid REEs covered by
each sample (line 9). It then initializes the counter FN for the number of forgone valid REEs, and
derives the upper bound of FN as FNmax = 𝑁 × 𝛽 , to maintain the recall guarantee (line 10).

It then extracts the subset 𝑆≈ of samples 𝑠 in 𝑆 for examination, such that the recall is guaranteed
(lines 11-15). For each sample 𝑠 in 𝑆≈, it follows the same enumeration procedure as IncMiner𝛿
(lines 10-11 in Figure 7) to update the set ΔΣ+ of newly valid REEs.

Finally, it minimizes each REE in ΔΣ+ to remove redundant predicates. A non-minimal REE
𝜑 can be introduced when its minimal predecessor 𝜑min is dropped by the approximation. The
mining algorithm finds such 𝜑min in ΔΣ+ to prove the non-minimality of 𝜑 .
Example 7: Consider a sample 𝜑𝑠 with 𝑃𝑟 .(conf ≤ 𝛿 ′) = 0.9, and neighbor size 𝑠 .𝑁 = 100.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:17

Input: R,D, 𝜆 = (𝜎, 𝛿), Σ, Δ𝜎 , and Δ𝛿 ∈ [−1, 1] as in Figures 3 and 7, and auxiliary states Σ<𝜎 and 𝑆 as in
those algorithms.

Output: The set ΔΣ+, ΔΣ− , Σ<𝜎 ′ , and 𝑆 ′ as above.
1. if Δ𝜎 > 0 ∧ Δ𝛿 > 0 then
2. ΔΣ− := {𝜑 ∈ Σ | supp(𝜑) < 𝜎 + Δ𝜎 ∨ conf (𝜑) < 𝛿 + Δ𝛿};
3. (ΔΣ+, Σ<𝜎 ′ , 𝑆 ′) := IncExpand𝜆 (D,ΔΣ−, 𝜎 + Δ𝜎, 𝛿 + Δ𝛿, Σ<𝜎 , 𝑆);
4. elseif Δ𝜎 > 0 ∧ Δ𝛿 < 0 then
5. ΔΣ− := {𝜑 ∈ Σ | supp(𝜑) < 𝜎 + Δ𝜎};
6. ... // Update ΔΣ+ following lines 9-11 in Figure 7;
7. elseif Δ𝜎 < 0 ∧ Δ𝛿 > 0
8. ΔΣ− := {𝜑 ∈ Σ | conf (𝜑) < 𝛿 + Δ𝛿};
9. (ΔΣ+, Σ<𝜎 ′ , 𝑆 ′) := IncExpand𝜆 (D,ΔΣ−, 𝜎 + Δ𝜎, 𝛿 + Δ𝛿, Σ<𝜎 , 𝑆);
10. else // Δ𝜎 < 0 ∧ Δ𝜎 < 0
11. 𝑄 := {𝜑 ∈ Σ<𝜎 | supp(𝜑) ≥ 𝜎 + Δ𝜎};
12. (ΔΣ+, Σ<𝜎 ′ , 𝑆 ′) := IncExpand𝜆 (D, 𝑄, 𝜎 + Δ𝜎, 𝛿 + Δ𝛿, Σ<𝜎 , 𝑆);
13. ... // Update ΔΣ+ following lines 9-11 in Figure 7;
14. return (ΔΣ+,ΔΣ−, Σ<𝜎 ′ , 𝑆 ′);

Procedure IncExpand𝜆
Input: D𝑠 , 𝑄0, 𝛿, 𝜎 , the current set Σ<𝜎 of pruned REEs, and the set 𝑆 of sampled lattice nodes.
Output: ΔΣ+, Σ′

<𝜎 , 𝑆
′ as above.

15. Σ′
<𝜎 := Σ<𝜎 ; 𝑆 ′ := 𝑆 ; ΔΣ+ = ∅;

16. for each 𝑝0 ∈ RHS do
17. 𝑄 := {𝜑 ∈ Σ<𝜎 | 𝜑.𝑝0 = 𝑝0};
18. while 𝑄 ≠ ∅ do
19. // Update ΔΣ+ and Σ′

<𝜎 following IncExpand in Figure 3;
20. // Update 𝑆 ′ following lines 2-8 in Figure 6;
21. return (ΔΣ+, Σ′

<𝜎 , 𝑆
′);

Fig. 9. Algorithm IncMiner𝜆

Discarding all neighbors of 𝑠 will increase false negative FN by 100 × (1 − 0.9) = 10. 2

Relative boundedness. As shown in Figure 4, during the incremental mining process for Δ𝛿 < 0,
only sampleswithinAFF and those along theAFF border are reexamined. As these samples also cover
newly valid REEs, their confidence ranges cover 𝛿 ′. The number of samples along the AFF border is
𝑂

(
|AFF |
|𝑆 |

)
, where |𝑆 | denotes the average number of REEs covered by a sample. Consequently, the

number of examined REEs outside of AFF is𝑂 (|AFF|), and the overall number of reexamined REEs
is linear in the size of AFF, i.e., 𝑂 (|AFF|). Thus IncMiner𝛿 is relatively bounded to BatchMiner.
Similarly, IncMiner≈

𝛿
is also relatively bounded to BatchMiner.

6 Incremental Algorithm For Δ𝜆
Putting the two incremental algorithms in Sections 4 and 5 together, this section develops an
incremental REE discovery algorithm in response to updates to parameter 𝜆 (Section 6.1). We also
parallelize the algorithm, and show that it is both bounded and parallelly scalable relative to batch
algorithm BatchMiner (Section 6.2).
6.1 Incremental Algorithm in Response to Δ𝜆

The incremental algorithm in response to Δ𝜆 = (Δ𝜎,Δ𝛿) is shown in Figure 9, referred to IncMiner𝜆 .
It separates the following cases.
(1) When both Δ𝜎 and Δ𝛿 are positive, IncMiner𝜆 filters unqualified REEs in Σ and adds them to

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:18 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

the set ΔΣ− . It then continues expanding REEs in ΔΣ− using procedure IncExpand𝜆 (lines 1-3),
such that the expanded REEs have confidence above 𝛿 + Δ𝛿 and at the same time, do not decrease
support below 𝜎 + Δ𝜎 . IncExpand𝜆 has the same logic of IncExpand𝜎 in Figure 3 and IncExpand𝛿
in Figure 7, maintaining both auxiliary states Σ<𝜎 ′ and 𝑆 ′ simultaneously.
(2) When Δ𝜎 > 0 and Δ𝛿 < 0, IncMiner𝜆 filters REEs in Σ according to the updated parameters
(lines 4-6), and then discovers lower confidence REEs by traversing the search lattice just like
IncMiner𝛿 .
(3) When Δ𝜎 < 0 and Δ𝛿 > 0, it first filters unqualified REEs, and then continues mining using
IncExpand𝜆 , along the same lines as the corresponding cases in IncMiner𝜎 and IncMiner𝛿 .
(4) When both Δ𝜎 and Δ𝛿 are negative, IncMiner𝜆 first continues mining for lower support using
IncExpand𝜆 , and then traverses back the search lattice following the same procedure as IncMiner𝛿
(Figure 7, lines 9-11), to find REEs with decreased confidence.
Example 8: Continuing with Examples 3 and 6, the user decides to lower support (𝜎 from 100 to
50) and confidence (𝛿 from 0.9 to 0.8) simultaneously. Let 𝐹 = (Σ, Σ<𝜎 , 𝑆) be the set of auxiliary
states after mining with the old 𝜎 and 𝛿 . IncMiner𝜆 first continues mining for low support REEs
from the current states 𝐹 (Figure 2). It differs from IncMiner𝜎 in that REEs with lower confidence
are considered valid, e.g., REEs with support 80 and confidence 0.85.

Next, IncMiner𝜆 traverses back the search lattice from states 𝐹 , to uncover low confidence REEs
neglected in prior mining (Figure 4), e.g., 𝜑6 (Example 6) is one of such uncovered REEs. 2

Relative boundedness. Following the analyses for IncMiner𝜎 and IncMiner𝛿 , one can verify that each
of these four cases is bounded relative to the batch algorithm BatchMiner; hence so is IncMiner𝜆 .

6.2 Parallel Rule Discovery
To scale with large datasets, we parallelize IncMiner𝜆 , denoted by PIncMiner𝜆 . We show that
PIncMiner𝜆 is parallelly scalable, i.e., it can scale with large datasets by adding more processors.
Parallel scalability. We adapt the notion of [52] to characterize the effectiveness of parallel
algorithms. Consider a sequential algorithm I for the incremental REE discovery problem.
Let 𝑡 (|D|,Δ𝜆, 𝜆) be the worst-case runtime of I when solving the instance (D,Δ𝜆, 𝜆) of the
incremental discovery problem. We say that a parallel algorithm I𝑝 is parallelly scalable relative
to I if on any instance (D,Δ𝜆, 𝜆) of the problem, the runtime of I𝑝 using 𝑛 processors in response
to parameter updates Δ𝜆 can be expressed as:

𝑇 (|D|,Δ𝜆, 𝜆, 𝑛) =𝑂
(𝑡 (|D|,Δ𝜆, 𝜆)

𝑛

)
.

Intuitively, the parallel scalability guarantees speedup of parallel algorithm I𝑝 relative to a
“yardstick” sequential algorithm I. Such I𝑝 can reduce the cost of I when more processors are used.
Parallelization. The batch algorithm BatchMiner has been parallelized in [29] under Bulk Syn-
chronous Parallel (BSP) [86] model and shown parallelly scalable. Given 𝑛 machines, a designated
coordinator partitions the discovery job into 𝑛−1 work units, distributes the work units to workers,
and synchronizes the computation. Each worker is responsible for its allocated work units for rule
discovery. The workload is dynamically balanced among workers to ensure efficient processing
and thus, the parallel scalability.

What makes BatchMiner amenable to parallelism is the levelwise expansion strategy (Expand in
Figure 1), where each worker expands a subset of candidate REEs in parallel and aggregate results
at the end. Since IncMiner𝜆 adopts the same expansion strategy (IncExpand in Figure 3), it can also
be paralleliszed using BSP. It differs from the parallel batch counterpart only in the following.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:19

Table 2. Dataset characteristics
Name Type #tuples #attributes #relations

Adult [51, 56, 64] real-life 32,561 15 1
Airport [56, 64] real-life 55,113 18 1

Hospital [11, 22, 56] real-life 114,919 15 1
Inspection [56, 69] real-life 220,940 17 1
NCVoter [56, 64] real-life 1,681,617 12 1

DBLP [81] real-life 1,799,559 18 3
Parksong [2, 10] real-life 5,002,872 27 1

(1) Maintenance of auxiliary data structures. Since such structures are employed and updated in the
expanding procedure of each candidate REE, they can be maintained within each work unit without
coordination, maintaining the same degree of parallelism.
(2) Lattice traversal via samples in IncMiner𝜆 (i.e., IncMiner𝛿 in Figure 7 and IncMiner≈

𝛿
in Figure 8).

The traversal of sample neighbors adopts a levelwise enumeration strategy just like BatchMiner,
and hence can be partitioned into work units and parallelized under the BSP model in the same
way as BatchMiner.

Following the analysis of the parallelized BatchMiner [29], one can conclude that PIncMiner𝜆
is parallelly scalable relative to IncMiner𝜆 . Along the same lines, we also parallelize algorithms
IncMiner𝜎 and IncMiner𝛿 , both with the parallel scalability.

7 Experimental Study
Using real-life data, this section experimentally evaluated (a) the efficiency and (b) (parallel)
scalability of the incremental algorithms in response to parameter updates, and (c) the effectiveness
of the optimization strategies. We also provide (d) guidelines for new discovery paradigms based
on the incremental algorithms, and (e) a test on the quality of rules discovered in practice.
Experimental setting. We start with the experimental setting.
Datasets. We used seven real-world datasets D from prior studies, as summarized in Table 2. We
discovered rules from the entire D.
Baselines. We implemented PIncMiner𝜆 in Go and evaluated it against the following. (1) Batch
baselines: BatchMiner [29], the SOTA REE mining algorithm (Section 2), and DCFinder [11], the
SOTA method for discovering DCs. (2) Incremental baseline: IApriori [8], which mines association
rules upon parameter updates; its rules are defined on a single tuple with constant predicates only, a
special case of REEs. We implemented IApriori using the Spark FP-Growth library [78]. (3) Variants
of PIncMiner𝜆 : IncMiner≈

𝛿 (0.7) is IncMiner≈
𝛿
with minimum recall 0.7; IncMiner𝜆NS is PIncMiner𝜆

without sampling the search lattice (Section 5), and traverses the entire lattice again when Δ𝛿 < 0
since confidence exhibits no anti-monotonicity. We parallelized the baselines for a fair comparison.
Default parameters. By default, we set the number of machines 𝑛 = 20, the support threshold 𝜎 =

10−6 · |D|2, the confidence threshold 𝛿 = 0.75, the radius 𝐾 = 3 for sampling (Section 5), the bounds
for recall 𝛽 = 0.7, Δ𝜎 = ×10±1, and Δ𝛿 = ±0.1.
Configuration. We conducted experiments on a cluster of up to 21 virtual machines, each
powered by 8GB RAM and a 2.20 GHz core. We do not include the time for loading datasets and
precomputing auxiliary data structures like PLI. Since batch mining takes long, we set a timeout
threshold at 10 hours. Following BatchMiner [29] (Section 2), we target REEs pertaining to an
application of users’ interest w.r.t. RHS and 𝑃0. We mine only bi-variable REEs for a consistent
comparison with DCFinder, which mines bi-variable DCs.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:20 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

batch IncMiner IncMiner0.7 IncMinerNS IApriori DCFinder

×101 ×102 ×103 ×104
0

1000

2000

Ru
nn

ing
 ti

m
e (

s)

(a) [Adult]: vary Δ𝜎 (> 0)

10000
TO

×10 1 ×10 2 ×10 3 ×10 4
0

500

Ru
nn

ing
 ti

m
e

(s)
(b) [Insp.]: vary Δ𝜎 (< 0)

900
1000

+0.05+0.10+0.15+0.20+0.25
0

200

Ru
nn

ing
 ti

m
e (

s)

(c) [Insp.]: vary Δ𝛿 (> 0)

850
900

-0.05 -0.10 -0.15 -0.20 -0.25
0

200

Ru
nn

ing
 ti

m
e (

s)

(d) [Insp.]: vary Δ𝛿 (< 0)

20000
25000

×101

+0.05
×102

+0.10
×103

+0.15
×104

+0.20

0

500

Ru
nn

ing
 ti

m
e

(s)

(e) [Insp.]: (Δ𝜎>0,Δ𝛿>0)

2000
4000

×101

-0.05
×102

-0.10
×103

-0.15
×104

-0.20
0

100

Ru
nn

ing
 ti

m
e (

s)

(f) [Adult]: Δ𝜆(Δ𝜎>0,Δ𝛿<0)

10000
TO

×10 1

+0.05
×10 2

+0.10
×10 3

+0.15
×10 4

+0.20

0

500

Ru
nn

ing
 ti

m
e (

s)

(g) [Insp.]: Δ𝜆(Δ𝜎<0,Δ𝛿>0)

2000
4000

×10 1

-0.05
×10 2

-0.10
×10 3

-0.15
×10 4

-0.20
0

100

Ru
nn

ing
 ti

m
e (

s)

(h) [Adult]: Δ𝜆(Δ𝜎<0,Δ𝛿<0)

20000
25000

10 5

0.80
10 4

0.85
10 3

0.90
10 2

0.95

0

500
Ru

nn
ing

 ti
m

e
(s)

(i) [Insp.]: 𝜆(Δ𝜎>0,Δ𝛿>0)

2000
4000

10 3

0.90
10 4

0.85
10 5

0.80
10 6

0.75
0

50

Ru
nn

ing
 ti

m
e (

s)

(j) [Adult]: 𝜆(Δ𝜎<0,Δ𝛿<0)
0.2 0.4 0.6 0.8 1.0

0
1000
2000
3000
4000

Ru
nn

ing
 ti

me
 (s

)

(k) [Parks.]: |D|, runtime

0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

Ou
tp

ut
 si

ze
 (M

B)

0.0

2.5

5.0

7.5

10.0

Nu
mb

er
 of

 R
EE

s (
K)

(l) [Parks.]: |D|, output size

0.2 0.4 0.6 0.8 1.0
200

400

600

800

1000

Au
x.

siz
e (

MB
)

(m) [Parks.]: |D|, aux. states
4 8 12 16 20

0

500

1000

1500

Ru
nn

ing
 tim

e (
s)

(n) [Insp.]: 𝑛,Δ𝜆(10−1,−0.1)
1 2 3 4 5

145
150
155
160
165

Ru
nn

ing
 tim

e (
s)

(o) [Hospital]: varying 𝐾 , time

1 2 3 4 5

2300

2400

2500

2600

Nu
mb

er
 of

 sa
mp

les

(p) [Hospital]: vary 𝐾 , storage

0.6 0.7 0.8 0.9 1.0

150

200

250

Ru
nn

ing
 tim

e (
s)

(q) [Hospital]: varying 𝛽 , time

0.6 0.7 0.8 0.9 1.0
85

90

95

100

Re
ca

ll (
%)

(r) [Hospital]: varying 𝛽 , recall

Fig. 10. Performance evaluation (part 1 of 2).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:21

10 3

0.75
10 4

0.80
10 5

0.85
10 6

0.90

90

95

100

Re
ca

ll (
%)

(s) [Adult]: guideline 1, recall

10 2

1.00
10 3

0.95
10 4

0.90
10 5

0.85

50

100

Re
ca

ll (
%)

(t) [Adult]: guideline 2, recall
Fig. 10. Performance evaluation (part 2 of 2).

Experimental results. We next report our findings. For the lack of space we show results on some
datasets; the others are consistent.
Exp-1: Efficiency. We tested the effectiveness of incremental rule discovery in response to updates
to support Δ𝜎 , confidence Δ𝛿 and both Δ𝜆 = (Δ𝜎,Δ𝛿), when Δ𝜎 and Δ𝛿 are positive or negative.
Varying Δ𝜎 (Δ𝜎 > 0). With initial 𝜎 = 10−6 |D|2, we varied Δ𝜎 such that updated 𝜎 ′ = 𝜎 ⊕ Δ𝜎 is
from 10−5 |D|2 to 10−2 |D|2. As shown in Figure 10(a) on Adult, (1) PIncMiner𝜆 , IncMiner≈

𝛿 (0.7) and
IncMiner𝜆NS outperform BatchMiner and DCFinder by 468× and 1314× on average, up to 658× and
1956×, respectively. Their runtime is under 1s since they only filter previously mined rules without
further mining. (2) Batch algorithms get faster when 𝜎 increases since by the anti-monotonicity of
support, there are less 𝜆-bounded rules. In contrast, the three incremental ones are insensitive to Δ𝜎 .
(3) IApriori takes less than 1s, since it mines single-tuple rules with only constant predicates, which
are much simpler than REEs defined on multiple tuples with variable predicates. It exhibits similar
performance across all subsequent experiments. (4) PIncMiner𝜆 , IncMiner≈

𝛿 (0.7) and IncMiner𝜆NS
perform comparably as expected, since they only differ when Δ𝛿 < 0.
Varying Δ𝜎 (Δ𝜎 < 0). Starting with 𝜎 = 10−2 |D|2, we varied Δ𝜎 such that updated 𝜎 ′ = 𝜎 ⊕ Δ𝜎 is
from 10−3 |D|2 to 10−6 |D|2. As shown in Figure 10(b) on Inspection, (1) all algorithms but IApriori
take longer when Δ𝜎 decreases. This is because for batch algorithms, smaller 𝜎 means more
𝜆-bounded rules to mine. For incremental ones, when Δ𝜎 < 0, they continue the search down
the lattice; so the larger Δ𝜎 is, the longer it takes to enumerate all rules for the reduced 𝜎 ′. (2)
The three incremental algorithms perform similarly, beating BatchMiner by 6× on average, up to
15×. (3) PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) perform similarly to IncMiner𝜆NS , indicating that sampling
overhead is negligible. (4) DCFinder takes 5h with 𝜎 ≥ 10−5 |𝐷 |2 and times out with smaller 𝜎 as
it does not scale with large number of predicates. We do not report DCFinder in the subsequent
experiments as it times out on other 𝜆’s for the same reason.
Varying Δ𝛿 (Δ𝛿 > 0). From initial 𝛿 = 0.7, we varied Δ𝛿 such that updated 𝛿 ′ = 𝛿 +Δ𝛿 is from 0.7 to
0.95. As shown in Figure 10(c) on Inspection, (1) PIncMiner𝜆 , IncMiner≈

𝛿 (0.7) and IncMiner𝜆NS beat
BatchMiner by 31× on average, up to 92×. Unlike the case of Δ𝜎 > 0, search has to be conducted
when Δ𝛿 > 0 as we no longer have the anti-monotonicity of support. (2) The three incremental ones
perform comparably by continuing down the search lattice, without back traversal. (3) DCFinder
times out on all Δ𝛿 (not shown).
Varying Δ𝛿 (Δ𝛿 < 0). Starting with initial 𝛿 = 0.95, we varied Δ𝛿 such that updated 𝛿 ′ = 𝛿 + Δ𝛿 is
from 0.9 to 0.7. As shown in Figure 10(d), (1) consistent with Figure 10(c) for Δ𝛿 > 0, PIncMiner𝜆
and IncMiner≈

𝛿 (0.7) beat BatchMiner by 4× and 9× on average, respectively, up to 5× and 13×.
(2) Both incremental and batch algorithms are less sensitive to |Δ𝛿 | than to |Δ𝜎 | as confidence
exhibits no anti-monotonicity. (3) When Δ𝛿 < 0, sampling is very effective, as the search must
traverse up the lattice (Section 5). Without sampling, IncMiner𝜆NS takes as long as BatchMiner. (4)

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:22 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

IncMiner≈
𝛿 (0.7) is 2× faster than PIncMiner𝜆 on average, up to 2.6×. The speedup comes with the

price of lower recall (Figure 10(r) in Exp-3).
Varying Δ𝜆. We varied Δ𝜎 and Δ𝛿 simultaneously, such that updated 𝜎 ′ is from 10−6 |D|2 to
10−2 |D|2, and updated 𝛿 ′ is from 0.7 to 0.9. As shown in Figures 10(e)–10(h) for different combi-
nations of positive and negative Δ𝜎 and Δ𝛿 , (1) in all cases, PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) beat
BatchMiner and DCFinder. (2) The trend is dominated by Δ𝜎 : the speedup is most significant when
Δ𝜎 > 0. Note that PIncMiner𝜆 is on average 40× faster than BatchMiner in Figure 10(e) and 5×
faster in Figure 10(f). The improvement decreases as Δ𝜎 increases, consistent with the tests above.
When Δ𝜎 < 0, the improvement is less sensitive to the magnitude of Δ𝜆, and both take longer
when Δ𝜎 increases. (3) Sampling is particularly effective when Δ𝛿 < 0, as shown in Figures 10(f)
and 10(h), consistent with tests above. In this case IncMiner𝜆NS without sampling is not much faster
than BatchMiner. (4) IncMiner≈

𝛿 (0.7) beats PIncMiner𝜆 when Δ𝛿 < 0 by 1.8× on average, up to 2.3×,
and performs comparably when Δ𝛿 > 0, consistent with Figures 10(c)–10(d). (5) As in the earlier
tests, when Δ𝛿 > 0, IncMiner𝜆NS performs similarly to the other two incremental miners.
Varying 𝜆. In addition to varying Δ𝜆 with a fixed initial 𝜆, we tested different initial 𝜆 values with
fixed Δ𝜆 to evaluate the effectiveness in practice, where 𝜆 continuously evolves. We simultaneously
varied 𝜎 and 𝛿 such that the new 𝜎 is from 10−6 |D|2 to 10−2 |D|2, and 𝛿 is from 0.75 to 0.95. As
shown in Figures 10(i)–10(j), (1) PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) beat BatchMiner and DCFinder.
(2) When both 𝜎 and 𝛿 increase (Figure 10(i)) the runtime of PIncMiner𝜆 , IncMiner≈

𝛿 (0.7) and
IncMiner𝜆NS remains insensitive to the initial values, since the mining time is primarily dominated
by Δ𝜎 , and increasing 𝜎 only needs to filter previously mined rules. (3) When both 𝜎 and 𝛿 decrease
(Figure 10(j)), PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) gets faster as search branches can be pruned earlier
when mining 𝜆-bounded rules. (4) Similar to the earlier test, IncMiner𝜆NS performs comparably to
PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) when Δ𝛿 > 0, but not much faster than BatchMiner when Δ𝛿 < 0.

Exp-2: Scalability. We evaluated the scalability of the incremental algorithms by varying the size
|D| of datasets D and the number 𝑛 of machines employed for parallel rule discovery.
Varying |D|. Using the largest dataset Parksong and setting 𝜆0 = (10−6 |D|2, 0.6) and Δ𝜆 =

(×10−0.1,+0.1), we evaluated the impact of |D| by varying the scaling factor (i.e., the number
of tuples) from 20% to 100%. As shown in Figures 10(k), (1) all algorithms take longer when |D|
gets larger, as expected. (2) PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) perform similarly, since they only dif-
fer when Δ𝛿 < 0. (3) They outperform BatchMiner by 4× on average. Note that Parksong is an
e-commerce transaction dataset in which attributes like product and shop IDs generate a large
number of constant predicates. This further exacerbates the exponential growth in the number of
𝜎-frequent REEs when support 𝜎 decreases.

We also tested on storage scalability. As shown in Figure 10(l), the output size of PIncMiner𝜆 ,
measured by the numbers of output REEs and their storage sizes, increases from 6MB to 66MB as
|D| increases. All baselines except IncMiner≈

𝛿 (0.7) show similar output sizes as they share the same
𝜆. In Figure 10(m), auxiliary data sizes of PIncMiner𝜆 (e.g., PLI, pruned REEs Σ<𝜎 , lattice samples) in-
creases from 232MB to 1074MB, about 58% of the input dataset size. Additionally, IncMiner𝜆NS is only
4% smaller than PIncMiner𝜆 on average, indicating that lattice samples have negligible overhead.
Varying 𝑛. Varying 𝑛 from 4 to 20, with 𝜆0 = (10−5 |D|2, 0.8),Δ𝜆 = (×10−1,−0.1), we tested the
parallel scalability of the algorithms. As shown in Figure 10(n), (1) PIncMiner𝜆 is 4.3× faster when
𝑛 varies from 4 to 20. It takes 220s on Inspection of 220K tuples at 𝑛 = 20. (2) It beats parallel
BatchMiner by 1.9× on average. (3) PIncMiner𝜆 , IncMiner≈

𝛿 (0.7) and IncMiner𝜆NS show similarly

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:23

...

(a) To minimize delay, start with 𝜎max and 𝛿min, gradually tune down 𝜎 and tune up 𝛿 .

...

(b) To prioritize high quality REEs, start with 𝜎max and 𝛿 = 1.0, tune down both 𝜎 and 𝛿 .
Fig. 11. Guidelines for incremental rule mining

parallelism. (4) IApriori is consistently fast as remarked earlier. (5) When Δ𝜎 > 0, no parallelism is
needed since one node can finish in less than 1s even with the largest dataset and Δ𝜆.

Exp-3: Optimization. We also evaluated the impact of configurable parameters 𝐾, 𝛽 and the
effectiveness of our sampling scheme on the time and space costs of incremental rule discovery.
Here we set 𝜆0 = (10−5 |D|2, 0.9) and Δ𝜆 = (0,−0.3).
Varying 𝐾 . We report the mining time and storage overhead of PIncMiner𝜆 in Figures 10(o)–10(p)
on Hospital, respectively. (1) The mining time increases with larger 𝐾 , since larger radius covers
more neighboring REEs, and thus incurs longer enumeration time. (2) The space cost decreases
with larger 𝐾 , as less sampled nodes are required to cover all REEs in the search lattice. (3)
PIncMiner𝜆 demonstrates a clear tradeoff between the mining time and space cost. (4) Optimal
performance is observed at 𝐾 = 3, where increasing 𝐾 further does not significantly reduce the
space cost, while substantially reducing mining time than larger 𝐾 .
Varying 𝛽 . We evaluated the mining time and recall of the discovered REEs by IncMiner≈

𝛿
. As

shown in Figures 10(q)–10(r) on Hospital by varying the recall guarantee 𝛽 from 0.6 to 1.0, (1)
IncMiner≈

𝛿 (0.7) takes longer as 𝛽 increases due to the more thorough examination of lattice samples
required for higher recall bound. Simply relaxing 𝛽 from 1.0 to 0.9 largely reduces mining time
since IncMiner≈

𝛿 (0.7) can skip many low coverage samples. At 𝛽 = 0.7, IncMiner≈
𝛿 (0.7) achieves a

1.8× speedup over PIncMiner𝜆 , without losing much recall (true recall = 89%). (2) Its true recall is
on average 15% higher than the preset lower bound 𝛽 when 𝛽 < 1, because samples have a large
overlap in neighbors, making the false negative counter a conservative over-approximation. (3)
IncMiner≈

𝛿 (0.7) exhibits a clear tradeoff between time and recall, as designed.

IncMiner𝛿 vs. IncMiner≈
𝛿
. (1) As shown above, IncMiner≈

𝛿 (0.7) is much faster than PIncMiner𝜆 when
Δ𝛿 < 0, and performs comparably when Δ𝛿 > 0, consistent with our design. (2) As shown in
Figure 10(q), the speedup increases as the recall bound 𝛽 decreases. (2) As a tradeoff, IncMiner≈

𝛿 (0.7)
has slightly lower recall, which is acceptable when speed is prioritized over absolute accuracy.

Exp-4: A guideline for rule discovery. As illustrated in Figure 11, incremental rule discovery
suggests two strategies for tuning parameters in mining endeavors. Denote by 𝜎max the highest
support of individual predicates, which is thus the highest possible 𝜎 .
(1) Small delay. Starting with 𝜎 = 𝜎max and the lowest acceptable confidence 𝛿0, one can gradually
tune down support 𝜎 while tuning up confidence 𝛿 (Figure 11(a)). This approach produces a stream
of outputs with small delays between them, as every incremental mining is a natural continuation
down the search lattice (Section 6) and no unnecessary recomputation is performed. Users do
not have to wait idle for long periods from one output to the next, thus shortening the total time
required to discover the needed rules.
(2) Prioritizing high-quality rules. If the number of mined REEs becomes a storage bottleneck, users

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

175:24 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

can start with 𝜎max and the largest confidence 𝛿 ′ = 1.0, and then gradually tune down both 𝜎 and 𝛿
(Figure 11(b)). This approach ensures that the highest-quality rules are discovered first. Based on
the insights gained from the initial batches of mined REEs, users can abandon unhelpful rules to
free up space and adjust mining criteria in future iterations [25].
Exp-5: Rule quality. To evaluate the quality of the rules mined by PIncMiner𝜆 , we invited data
quality experts from our industry partners to provide a set of 15 golden rules for dataset Adult.
We then run PIncMiner𝜆 following the two guidelines above. As shown in Figure 11(s)-11(t), (1) in
each scenario, PIncMiner𝜆 successfully discovers the complete set of golden rules. (2) It requires 5
and 8 iterations, respectively, to find the right 𝜆′ = (10−3, 0.8), and uncover the full set of golden
rules under the two guidelines. (3) The end-to-end mining time is 634s and 995s, respectively. (4)
Guideline 1 requires fewer iterations as its initial 𝜆0 = (10−3, 0.75) is closer to 𝜆′. (5) As shown in
Figure 11(s), even with mining results under the optimal 𝜆′, subsequent iterations are still required
to uncover higher confidence rules. These rules would remain undiscovered at lower 𝛿 if they have
𝜆-bounded predecessors. This highlights the need for incremental mining upon parameter updates.
We also compared the outputs of PIncMiner𝜆 and DCFinder. There are 2349 DCs mined by

DCFinder, which are covered by REEs mined by PIncMiner𝜆 . Additionally, under the same time
constraints, PIncMiner𝜆 discovers 18% more rules that are not mined by DCFinder, since DCFinder
misses certain rules with constant predicates due to its pruning strategy for speed. These findings
indicate that PIncMiner𝜆 can discover rules as expressive as DCs.
Summary. We find the following. (1) Incremental rule discovery is effective. It outperforms the
batch counterpart, no matter whether Δ𝜎 and Δ𝛿 are positive or negative, up to 658×. It is 2.5×
and 5× faster even when Δ𝜎 and Δ𝛿 account for 99% and 20% of 𝜎 and 𝛿 , respectively. (2) Our
sampling strategy is effective. When Δ𝛿 < 0, PIncMiner𝜆 and IncMiner≈

𝛿 (0.7) beat IncMiner𝜆NS by
4× and 9×, respectively. (3) Incremental rule discovery is feasible in practice. PIncMiner𝜆 takes
170s on Adult with 32K tuples when 𝑛 = 20, when Δ𝜎 and Δ𝛿 account for 99% and 10% of 𝜎 and
𝛿 , respectively, as opposed to 664s by the batch baseline. (4) PIncMiner𝜆 is parallelly scalable. It
is 4.3× faster when the number 𝑛 of machines varies from 4 to 20. (5) PIncMiner𝜆 can discover
high quality rules validated by data quality experts. (6) Incremental rule discovery suggests new
paradigms for mining rules in stages such that the users can effectively and efficiently find rules
that meet their need.

8 Conclusion
The novelty of the work consists of the following. The work (1) formulates and studies the problems
for incremental rule discovery in response to updates to the thresholds for support, confidence, and
both; (2) provides the first algorithms for the incremental problems with boundedness relative to
the batch counterpart; and (3) develops strategies for scaling with large datasets such as sampling
for search lattice with accuracy guarantees and parallel incremental discovery with the parallel
scalability. Our experimental study has verified that our algorithms are promising in practice.

A topic for future work is incremental discovery of top-𝑘 diversified rules that fit users’ need and
differ from each other. Another topic is to incrementally mine fraud-detection rules in dynamic data.

Acknowledgements
We thank Peng Liu and Yaoshu Wang for their extensive support in our experiments, and Rui Fan,
Ziyan Han, and Min Xie for their feedback on an early version of this work. We are also grateful to
the anonymous SIGMOD reviewers for their insightful comments. This work was supported by the
ShanghaiTech Startup Fund.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:25

References
[1] 2024. Code, datasets and full version. https://github.com/HaoxianChen/inc-rds-param-sigmod25.
[2] 2024. Rock. http://www.grandhoo.com/en.
[3] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. 2014. DFD: Efficient functional dependency discovery. In

CIKM. 949–958.
[4] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
[5] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining Association Rules in Large Databases.

In VLDB.
[6] Madhu V Ahluwalia, Aryya Gangopadhyay, Zhiyuan Chen, and Yelena Yesha. 2015. Target-based, privacy preserving,

and incremental association rule mining. IEEE Transactions on Services Computing 10, 4 (2015), 633–645.
[7] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo I. Seltzer, and Cynthia Rudin. 2017. Learning Certifiably

Optimal Rule Lists for Categorical Data. J. Mach. Learn. Res. 18 (2017), 234:1–234:78.
[8] Iyad Aqra, Norjihan Abdul Ghani, Carsten Maple, José Machado, and Nader Sohrabi Safa. 2019. Incremental algorithm

for association rule mining under dynamic threshold. Applied Sciences 9, 24 (2019), 5398.
[9] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases. In

PODS. 68–79.
[10] Xianchun Bao, Zian Bao, Qingsong Duan, Wenfei Fan, Hui Lei, Daji Li, Wei Lin, Peng Liu, Zhicong Lv, Mingliang

Ouyang, Jiale Peng, Jing Zhang, Runxiao Zhao, Shuai Tang, Shuping Zhou, Yaoshu Wang, Qiyuan Wei, and Min Xie.
2024. Rock: Cleaning Data by Embedding ML in Logic Rules. In SIGMOD (industrial track). ACM.

[11] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial Constraint Discovery with Hydra. PVLDB
11, 3 (2017), 311–323.

[12] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.
[13] Paul Suganthan G. C., Adel Ardalan, AnHai Doan, and Aditya Akella. 2018. Smurf: Self-Service String Matching Using

Random Forests. PVLDB 12, 3 (2018), 278–291.
[14] Loredana Caruccio and Stefano Cirillo. 2020. Incremental discovery of imprecise functional dependencies. Journal of

Data and Information Quality (JDIQ) 12, 4 (2020), 1–25.
[15] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe Polese. 2019. Incremental Discovery of Functional

Dependencies with a Bit-vector Algorithm. In Symposium on Advanced Database Systems (SEBD) (CEUR Workshop
Proceedings, Vol. 2400). CEUR-WS.org.

[16] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe Polese. 2021. Efficient discovery of functional
dependencies from incremental databases. In International Conference on Information Integration and Web Intelligence.
400–409.

[17] Venkatesan T Chakaravarthy, Vinayaka Pandit, and Yogish Sabharwal. 2009. Analysis of sampling techniques for
association rule mining. In International Conference on Database Theory (ICDT). 276–283.

[18] B Chandra and Shalini Bhaskar. 2011. A new approach for generating efficient sample from market basket data. Expert
Systems with Applications 38, 3 (2011), 1321–1325.

[19] Bin Chen, Peter Haas, and Peter Scheuermann. 2002. A new two-phase sampling based algorithm for discovering
association rules. In ACM SIGKDD international conference on Knowledge Discovery and Data Mining. 462–468.

[20] Chyouhwa Chen, Shi-Jinn Horng, and Chin-Pin Huang. 2011. Locality sensitive hashing for sampling-based algorithms
in association rule mining. Expert Systems with Applications 38, 10 (2011), 12388–12397.

[21] Chaofan Chen and Cynthia Rudin. 2018. An Optimization Approach to Learning Falling Rule Lists. In International
Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 84. PMLR, 604–612.

[22] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints. PVLDB 6, 13 (2013), 1498–1509.
[23] Kun-Ta Chuang, Ming-Syan Chen, and Wen-Chieh Yang. 2005. Progressive sampling for association rules based on

sampling error estimation. In Advances in Knowledge Discovery and Data Mining (PAKDD). Springer, 505–515.
[24] William W. Cohen. 1995. Fast Effective Rule Induction. In International Conference on Machine Learning. Morgan

Kaufmann, 115–123.
[25] Ting Deng and Wenfei Fan. 2014. On the Complexity of Query Result Diversification. ACM Trans. Database Syst. 39, 2

(2014), 15:1–15:46.
[26] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Dependencies for

Capturing Data Inconsistencies. ACM Trans. Database Syst. 33, 1 (2008), 25:1–25:49.
[27] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering conditional functional dependencies.

TKDE 23, 5 (2011), 683–698.
[28] Wenfei Fan, Ziyan Han, Weilong Ren Yaoshu Wang, Min Xie, and Mengyi Yan. 2024. Splitting Tuples of Mismatched

Entities. Proc. ACM Manag. Data (2024).
[29] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2022. Parallel Rule Discovery from Large Datasets by Sampling.

In SIGMOD. ACM, 384–398.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

https://github.com/HaoxianChen/inc-rds-param-sigmod25
http://www.grandhoo.com/en

175:26 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

[30] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2023. Discovering Top-k Rules using Subjective and Objective
Criteria. Proc. ACM Manag. Data 1, 1 (2023), 70:1–70:29.

[31] Wenfei Fan, Muyang Liu, Shuhao Liu, and Chao Tian. 2024. Capturing More Associations by Referencing Knowledge
Graphs. PVLDB 17, 6 (2024), 1173–1186.

[32] Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying logic rules and machine learning for entity enhancing. Sci. China
Inf. Sci. 63, 7 (2020).

[33] Wenfei Fan and Chao Tian. 2022. Incremental Graph Computations: Doable and Undoable. ACM Trans. Database Syst.
47, 2 (2022), 6:1–6:44.

[34] Wenfei Fan, Chao Tian, YanghaoWang, and Qiang Yin. 2021. Parallel Discrepancy Detection and Incremental Detection.
PVLDB 14, 8 (2021), 1351–1364.

[35] Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou. 2021. Incrementalizing Graph Algorithms.
In SIGMOD. 459–471.

[36] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association Rules with Graph Patterns. PVLDB 8, 12 (2015),
1502–1513.

[37] Peter A Flach and Iztok Savnik. 1999. Database dependency discovery: Amachine learning approach. AI communications
12, 3 (1999), 139–160.

[38] Johannes Fürnkranz and Gerhard Widmer. 1994. Incremental Reduced Error Pruning. In International Conference on
Machine Learning. Morgan Kaufmann, 70–77.

[39] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, and Philip S. Yu. 2019. A Survey of
Parallel Sequential Pattern Mining. ACM Trans. Knowl. Discov. Data 13, 3 (2019), 25:1–25:34.

[40] Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. 2019. Secure Multi-Party Functional Dependency Discovery. PVLDB
13, 2 (2019), 184–196.

[41] Tarek F Gharib, Hamed Nassar, Mohamed Taha, and Ajith Abraham. 2010. An efficient algorithm for incremental
mining of temporal association rules. Data & Knowledge Engineering 69, 8 (2010), 800–815.

[42] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008. On generating near-optimal tableaux
for conditional functional dependencies. PVLDB 1, 1 (2008), 376–390.

[43] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without Candidate Generation. In SIGMOD.
[44] Xuegang Hu and Haitao Yu. 2006. The research of sampling for mining frequent itemsets. In Rough Sets and Knowledge

Technology. Springer, 496–501.
[45] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE: An Efficient Algorithm for Discovering

Functional and Approximate Dependencies. The computer journal 42, 2 (1999), 100–111.
[46] Wontae Hwang and Dongseung Kim. 2006. Improved association rule mining by modified trimming. In IEEE Interna-

tional Conference on Computer and Information Technology (CIT). IEEE, 24–24.
[47] Caiyan Jia and Ruqian Lu. 2005. Sampling ensembles for frequent patterns. In International Conference on Fuzzy

Systems and Knowledge Discovery. Springer, 1197–1206.
[48] Richard M Karp. 2010. Reducibility among combinatorial problems. Springer.
[49] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity resolution approaches on real-world match

problems. PVLDB 3, 1-2 (2010), 484–493.
[50] loannis Koumarelas, Thorsten Papenbrock, and Felix Naumann. 2020. MDedup: Duplicate detection with matching

dependencies. PVLDB 13, 5 (2020), 712–725.
[51] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate dependencies. PVLDB 11, 7 (2018),

759–772.
[52] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of Efficient Parallel Algorithms. Theor.

Comput. Sci. 71, 1 (1990), 95–132.
[53] Yanrong Li and Raj P Gopalan. 2004. Effective sampling for mining association rules. In Australasian Joint Conference

on Artificial Intelligence. Springer, 391–401.
[54] Yanrong Li and Raj P Gopalan. 2005. Stratified Sampling for Association Rules Mining. In Artificial Intelligence

Applications and Innovations (AIAI). Springer, 79–88.
[55] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo I. Seltzer. 2020. Generalized and Scalable Optimal

Sparse Decision Trees. In International Conference on Machine Learning (ICML), Vol. 119. PMLR, 6150–6160.
[56] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approximate Denial Constraints. PVLDB 13,

10 (2020), 1682–1695.
[57] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient discovery of functional dependencies and Armstrong

relations. In EDBT. Springer, 350–364.
[58] Basel A Mahafzah, Amer F Al-Badarneh, and Mohammed Z Zakaria. 2009. A new sampling technique for association

rule mining. Journal of Information Science 35, 3 (2009), 358–376.
[59] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. 1994. Efficient algorithms for discovering association rules.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

Incremental Rule Discovery in Response to Parameter Updates 175:27

In KDD: AAAI workshop on Knowledge Discovery in Databases. Citeseer, 181–192.
[60] Stephen H. Muggleton and Luc De Raedt. 1994. Inductive Logic Programming: Theory and Methods. J. Log. Program.

19/20 (1994), 629–679.
[61] Noel Novelli and Rosine Cicchetti. 2001. Fun: An efficient algorithm for mining functional and embedded dependencies.

In ICDT. Springer, 189–203.
[62] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Functional Dependency Discovery. In SIGMOD.
[63] Srinivasan Parthasarathy. 2002. Efficient progressive sampling for association rules. In IEEE International Conference

on Data Mining. IEEE, 354–361.
[64] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019. Discovery of Approximate (and Exact)

Denial Constraints. PVLDB 13, 3 (2019), 266–278.
[65] Chaoqin Qian, Menglu Li, Zijing Tan, Ai Ran, and Shuai Ma. 2023. Incremental discovery of denial constraints. VLDB

J. 32, 6 (2023), 1289–1313.
[66] J. Ross Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (1986), 81–106.
[67] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
[68] J. Ross Quinlan. 2004. Data Mining Tools See5 and C5.0.
[69] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: Holistic Data Repairs with

Probabilistic Inference. PVLDB 10, 11 (2017), 1190–1201.
[70] Matteo Riondato and Eli Upfal. 2015. Mining frequent itemsets through progressive sampling with rademacher

averages. In SIGKDD. ACM, 1005–1014.
[71] Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable

models instead. Nat. Mach. Intell. 1, 5 (2019), 206–215.
[72] Cynthia Rudin, Benjamin Letham, and David Madigan. 2013. Learning theory analysis for association rules and

sequential event prediction. J. Mach. Learn. Res. 14, 1 (2013), 3441–3492.
[73] Nandlal L Sarda and NV Srinivas. 1998. An adaptive algorithm for incremental mining of association rules. In

International Workshop on Database and Expert Systems Applications (Cat. No. 98EX130). IEEE, 240–245.
[74] Philipp Schirmer, Thorsten Papenbrock, Ioannis K. Koumarelas, and Felix Naumann. 2020. Efficient Discovery of

Matching Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 13:1–13:33.
[75] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing, Torben Mayer, and Daniel

Neuschäfer-Rube. 2019. DynFD: Functional Dependency Discovery in Dynamic Datasets. In EDBT.
[76] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo Papotti, Jorge-Arnulfo

Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. PVLDB
11, 2 (2017), 189–202.

[77] Shaoxu Song and Lei Chen. 2009. Discovering matching dependencies. In CIKM.
[78] Apache Spark. 2024. Frequent Pattern Mining. https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html.
[79] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining Sequential Patterns: Generalizations and Performance

Improvements. In EDBT. Springer, 3–17.
[80] Zijing Tan, Ai Ran, Shuai Ma, and Sheng Qin. 2020. Fast Incremental Discovery of Pointwise Order Dependencies.

PVLDB 13, 10 (2020), 1669–1681.
[81] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. ArnetMiner: Extraction and Mining of

Academic Social Networks. In KDD. 990–998.
[82] Wannasiri Thurachon and Worapoj Kreesuradej. 2021. Incremental association rule mining with a fast incremental

updating frequent pattern growth algorithm. IEEE Access 9 (2021), 55726–55741.
[83] Hannu Toivonen. 1996. Sampling large databases for association rules. In VLDB. 134–145.
[84] Pauray SM Tsai, Chih-Chong Lee, and Arbee LP Chen. 1999. An efficient approach for incremental association rule

mining. In PAKDD. Springer, 74–83.
[85] Jeffrey D. Ullman. 2000. A Survey of Association-Rule Mining. In International Conference on Discovery Science. Springer,

1–14.
[86] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (1990), 103–111.
[87] Flavian Vasile, Adrian Silvescu, Dae-Ki Kang, and Vasant G. Honavar. 2006. TRIPPER: Rule Learning Using Taxonomies.

In PAKDD.
[88] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille. 2017. A Bayesian

Framework for Learning Rule Sets for Interpretable Classification. J. Mach. Learn. Res. 18 (2017), 70:1–70:37.
[89] G. I. Webb and S. Zhang. 2005. k-Optimal Rule Discovery. Data Mining and Knowledge Discovery 10, 1 (2005), 39–79.
[90] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. 2001. FastFDs: A Heuristic-Driven, Depth-First

Algorithm for Mining Functional Dependencies from Relation Instances - Extended Abstract. In DaWak.
[91] Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded sampling for analytics on big sparse data. PVLDB 7,

13 (2014), 1508–1519.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html

175:28 Haoxian Chen, Wenfei Fan, and Jiaye Zheng

[92] Hong Yao, Howard J. Hamilton, and Cory J. Butz. 2002. FD_Mine: Discovering Functional Dependencies in a Database
Using Equivalences. In International Conference on Data Mining (ICDM). IEEE Computer Society, 729–732.

[93] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. 1997. New Algorithms for Fast
Discovery of Association Rules. In KDD. AAAI Press, 283–286.

[94] Chengqi Zhang, Shichao Zhang, and Geoffrey I Webb. 2003. Identifying approximate itemsets of interest in large
databases. Applied Intelligence 18 (2003), 91–104.

[95] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Perspective on Discovering Functional
Dependencies in Noisy Data. In SIGMOD. 861–876.

[96] Yanchang Zhao, Chengqi Zhang, and Shichao Zhang. 2006. Efficient Frequent Itemsets Mining by Sampling. AMT 138
(2006), 112–7.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 175. Publication date: June 2025.

	Abstract
	1 Introduction
	2 Batch Discovery of REEs
	2.1 Collective Rules across Relations
	2.2 A Batch Algorithm for Rule Discovery

	3 Incremental Discovery Problems
	4 Incremental Algorithm for
	5 Incremental Algorithm for
	5.1 Sampling for Search Lattice
	5.2 Incremental algorithms in Response to

	6 Incremental Algorithm For
	6.1 Incremental Algorithm in Response to
	6.2 Parallel Rule Discovery

	7 Experimental Study
	8 Conclusion
	References

