
Towards Example-guided
Network Synthesis

Haoxian Chen, University of Pennsylvania

Anduo Wang, Temple University

Boon Thau Loo, University of Pennsylvania

Network management is
challenging

• Low-level, vendor-specific configurations

- complex (~1000 lines in a Cisco router)

- error-prone (AWS outage 2017)

• Alternative: Software-defined networking (SDN)

- mitigates distributed complexity by centralized view

- but controller programs are still complicated to
implement

- high-level Domain-Specific Languages (DSL) reduce
lines of codes, but have steep learning curve ([Frenetic],
[Pyretic], [FlowLog])

Our solution: networking by
input-output examples

1. Network operator provides some input-output (I/O) pairs

- this work focus on I/O of the controller program in SDN

2. Computer automatically synthesizes a program

Example: stateful firewall

p1 p2

s1
OutsideInside

Controller
PacketIn Fwd

Input Output

The underlying network

packet
10.0.0.1 -> 172.217.11.46 allow

packet
172.217.11.46 -> 10.0.0.2 block

packet
172.217.11.46 -> 10.0.0.3 block

Synthesizer interface

Synthesize a program

packet
119.212.8.8 -> 10.0.0.2

packet
172.217.11.46 -> 10.0.0.1

block

allow

Design space
Synthesis target: controller programs v.s. data plane
configurations

Design space
Synthesis target: controller programs

• Understandable to human

• Verifiable

• Compose with other programs to form complex features

[Frenetic]

• Reuse in other settings

NDLog program

C program

Smaller search space for
program synthesis

Synthesize NDLog program

Leverage the compactness of NDLog programs

Synthesize NDLog program

NDLog evaluates each rule independently

so that we can synthesize one rule at a time

Background: NDLog
• One of the Logic-programming family.

• Inputs and Outputs are organized as structured tables.

• Program consists of a set of rules.

• Rules tranform input to output

SrcIP DstIP InPort

10.0.0.1 10.0.0.2 1

10.0.0.3 10.0.0.2 2

10.0.0.4 10.0.0.5 1

Input: packetIn

IP Port

10.0.0.2 1

10.0.0.2 2

10.0.0.5 1

Output: fwd

fwd(IP, Port) :-
 packetIn(SrcIP, DstIP,
InPort),
 IP=DstIP, InPort=Port.

Example-guided synthesis:
An overview

Facon the synthesizer

examples

Input-output
PacketIn

10.0.0.1 -> 172.217.11.46
Fwd

10.0.0.1, port 2
PacketIn

10.0.0.1 -> 172.217.11.46
Fwd

172.217.11.46, port 1

Symbolic Rules

An NDLog
program consists
of a set of
symbolic rules

Fwd(swi, dstIP, srcIP, prt) :- PacketIn(swi, srcIP, dstIP, prt),

 InBound(swi, prt).

Fwd(swi, srcIP, dstIP, prt) :- PacketIn(swi, srcIP, dstIP, prt2),

 InBound(swi, prt2), Outbound(swi, prt).

p1 p2

s1
OutsideInside

Controller
PacketIn Fwd

Inbound(s1,p1) Outbound(s1,p2)
background knowledge

1. Divide-and-conquer principle: one rule at a time,
combine them into the final program

- because NDLog evaluates each rule independently

2. Prune search space

- Only search within the syntax-correct rule space

Synthesis algorithm

Find the set of rules cover all examples

Synthesis algorithm

Fwd(Switch, Dst, Src, Port) :-

 PacketIn(Switch, Src, Dst, Port),

 InBound(Switch, Port).

Input-output examples

PacketIn Fwd

switch 1,

10.0.0.1 -> 172.217.11.46,

port 1

switch 1,

172.217.11.46, 10.0.0.1,

port 1
switch 1,

10.0.0.1 -> 172.217.11.46,
port 1

switch 1,

10.0.0.1, 172.217.11.46,

port 2cover

Inbound
switch 1 port 1

background knowledge

Outbound
switch 1 port 2

Synthesize individual rule
Inbound

switch 1 port 1

background knowledge

Outbound
switch 1 port 2

Input-output examples

PacketIn Fwd

switch 1,

10.0.0.1 -> 172.217.11.46,

port 1

switch 1,

172.217.11.46, 10.0.0.1,

port 1
switch 1,

10.0.0.1 -> 172.217.11.46,
port 1

switch 1,

10.0.0.1, 172.217.11.46,

port 2

? (?,?) :- ?(?,?), ?(?,?), …

Skeleton of an NDLog rule

relation name variable names

4 possible Relation Names:

PacketIn,

Fwd,

Inbound,

Outbound

Fwd(?,?) :- PacketIn(?,?,?,?),

Inbound(?,?), Outbound(?,?).

(Order of relations within the rule body does not matter)

Synthesize individual rule
Inbound

switch 1 port 1

background knowledge

Outbound
switch 1 port 2

Input-output examples

PacketIn Fwd

switch 1,

10.0.0.1 -> 172.217.11.46,

port 1

switch 1,

172.217.11.46, 10.0.0.1,

port 1
switch 1,

10.0.0.1 -> 172.217.11.46,
port 1

switch 1,

10.0.0.1, 172.217.11.46,

port 2

Fwd(?,?) :- PacketIn(?,?,?,?),
Inbound(?,?), Outbound(?,?).

Enumerate on all possible variable
instantiation, until we find a rule
that covers some examples

Preliminary results
Synthesis programs:

• Reachability

- Query if any pair of nodes can reach each other in the
network

• MAC learning switch

• Stateful firewall

• App-based forwarding

 - Look up forward destination by application

Preliminary results

Program (# possible
programs) # rules tried Time (s)

reachability	(10^5) 226 0.4

MAC learning	(10^6) 11 0.02

stateful firewall	(10^11) 13497 72

APP-based forwarding	
(10^14) 28829 149

These reductions come from two insights:

(1) factor program into individual rules

(2) type information

• The major bottleneck of synthesis efficiency
comes from the enumerative nature

• Examples were carefully hand-crafted, in order to
synthesize correct programs.

Ongoing work
• Speed up synthesis

 - model it as reinforcement problem, use heuristic to direct
searching

• Automatic example generation

 - collect from network program execution traces

• Richer DSL support

Conclusion

• Propose new approach: synthesize declarative controller
program using input-output examples

• Synthesis algorithm: leverage both syntactic restrictions
and semantic features of declarative programs

• Proof-of-concept prototype: synthesize declarative
programs with fewer than 4 relations, within 2 minutes.

