Towards Example-guided
Network Synthesis

Haoxian Chen, University of Pennsylvania
Anduo Wang, Temple University
Boon Thau Loo, University of Pennsylvania

Network management is
challenging

e |ow-level, vendor-specific configurations
- complex (~1000 lines in a Cisco router)
- error-prone (AWS outage 2017)

e Alternative: Software-defined networking (SDN)
- mitigates distributed complexity by centralized view

- but controller programs are still complicated to
implement

- high-level Domain-Specific Languages (DSL) reduce
lines of codes, but have steep learning curve ([Frenetic],
[Pyretic], [FlowLog])

Our solution: networking by
Input-output examples

1. Network operator provides some input-output (I/O) pairs
- this work focus on I/O of the controller program in SDN

2. Computer automatically synthesizes a program

Example: stateful firewall

Synthesize a program

packet
10.0.0.1 ->172.217.11.46

Synthesizer interface

Input Output packet

,' . 172.217.11.46 -> 10.0.0.2
Packetln| qu

Controller

ST @ packet . ek
@ of e 172.217.11.46 -> 10.0.0.3

The underlying network

packet
119.212.8.8 -> 10.0.0.2

packet
172.217.11.46 -> 10.0.0.1

Design space

Synthesis target: controller programs v.s. data plane
configurations

Design space

Synthesis target: controller programs
» Understandable to human
» Verifiable

» Compose with other programs to form complex features
[Frenetic]

* Reuse in other settings

Synthesize NDLog program

Leverage the compactness of NDLog programs

Smaller search space for
program synthesis

}

NDLog program

C program

Synthesize NDLog program

NDLog evaluates each rule independently

so that we can synthesize one rule at a time

Background: NDLog

* One of the Logic-programming family.
- |nputs and Outputs are organized as structured tables.
- Program consists of a set of rules.

* Rules tranform input to output

Input: packetin

Output: fwd
SrclP DstIP InPort P Port
fwd(IP, Port) :-
10.0.0.1 | 10.0.0.2 1 packetin(SrclP, DstIP, 10.0.0.2 1
InPort),
10.0.0.3 | 10.0.0.2 2 IP=DstIP, InPort=Port. 10.0.0.2 2
>
10.0.0.4 | 10.0.0.5 1 10.0.0.5 1

Example-guided synthesis:

An overview

&' — -
Packetln o qu
Controller Input-output
PacketIn Fwd
10.0.0.1 ->172.217.11.46 10.0.0.1, port 2
PacketIn Fwd
Inbound(s1,p1) Outbound(s1,p?2) 10.0.0.1 -> 172.217.11.46 | 172.217.11.46, port 1
background knowledge examples
~ /

An NDLog

program consists

of a set of

symbolic rules InBound(swi, prt2), Outbound(swi, prt).

Facon the synthesizer

v

Fwd(swi, dstlP, srclP, prt) :- Packetin(swi, srclP, dstIP, prt),
InBound(swi, prt).

Fwd(swi, srclP, dstIP, prt) :- Packetin(swi, srclP, dstIP, prt2),

Symbolic Rules

Synthesis algorithm

1. Divide-and-conquer principle: one rule at a time,
combine them into the final program
- because NDLog evaluates each rule independently

2. Prune search space
- Only search within the syntax-correct rule space

Synthesis algorithm

Find the set of rules cover all examples

Inbound Outbound
switch1: port1 ||switch1: port?2

background knowledge

Input-output examples

Fwd(Switch, Dst, Src, Port) :- Packetin Fwd
PacketIn(Switch, Src, Dst, Port), 5
InBound(Switch, Port). switch 1, | switch 1,
10.0.0.1 ->1722‘I71146 1172.217.11.46, 10001
__________________________ port1port1
switch 1, switch 1,

10.0.0.1 -> 172. 217 11.46, . 10001 172. 217 11.46,

cover port 1 port 2

Synthesize individual rule

relation name variable names

Inbo:und Outbiound \‘,, (2.2) - 2(2,2), 2(2.7), ...
switch 1 port 1 switch 1 port 2

Skeleton of an NDLog rule

T~

background knowledge

> 4 possible Relation Names:
Input-output examples — Packetin,

''' Fwd,

PacketIn Fwd Inbound,

switch 1, switch 1, Outbound
10.0.0.1 —>17221711 46, 172.217.11 46, 10001
__________________________ port1port1

switch 1, switch 1, Fwd(?,?) :- PacketIn(?,?,2,7?),
10.0.0.1 -> 172. 217 11.46, 10 0.0.1, 172. 217 11.46, Inbound(?,?), Outbound(?,?).

port 1 port 2

(Order of relations within the rule body does not matter)

Synthesize individual rule

Inbound Outbound
switch 1! port1 ||switch 1! port2

background knowledge

Input-output examples

Packetln Fwd
switch 1, switch 1,
10.0.0.1 —>17221711 460, 17221711 46, 10001
__________________________ po"”por“
switch 1, 5 switch 1,

10.0.0.1 ->17221711 40, 10001 17221711 40,
port 1 port 2

Fwd(?,?) :- PacketIn(?,?,?,?),
Inbound(?,7?), Outbound(?,?).

Enumerate on all possible variable
instantiation, until we find a rule
that covers some examples

Preliminary results

Synthesis programs:

e Reachability

- Query if any pair of nodes can reach each other in the
network

e MAC learning switch
o Stateful firewall

e App-based forwarding
- Look up forward destination by application

Preliminary results

These reductions come from two insights:
/‘\ (1) factor program into individual rules
(2) type information

Program (# possible # rules tried Time (s)
programs) s |
reachability (1075) 226 0.4
MAC learning (10°6) 11 0.02
stateful firewall (10711) 13497 72
APP-based forwarding
(107 4) 28829 149

* The major bottleneck of synthesis efficiency
comes from the enumerative nature

e Examples were carefully hand-crafted, in order to
synthesize correct programs.

Ongoing work

e Speed up synthesis
- model it as reinforcement problem, use heuristic to direct
searching

* Automatic example generation
- collect from network program execution traces

 Richer DSL support

Conclusion

e Propose new approach: synthesize declarative controller
program using input-output examples

e Synthesis algorithm: leverage both syntactic restrictions
and semantic features of declarative programs

e Proof-of-concept prototype: synthesize declarative
programs with fewer than 4 relations, within 2 minutes.

