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Abstract—Fuel cell hybrid electric vehicles (FCHEVs) are
recognized as a promising solution for vehicle electrification.
However, the adoption of FCHEVs is relatively slow due to
various factors such as the high cost of hydrogen and the limited
lifespan of fuel cells. Therefore, effective energy management
strategies are of great interest. Model predictive control (MPC)
is widely employed to deal with energy management in FCHEVs.
However, conventional MPC often relies on subjective selection
of control weights in the objective function and the performance
may be compromised. This paper proposes an optimal weight
adaptation method within the MPC framework to enhance its ef-
fectiveness. The weights in the objective function are dynamically
adjusted online using a moving horizon. Optimization techniques
are then applied to fine tune these weights. The effectiveness of
the proposed MPC controller with adaptive tuning weights is
validated under the UDDS drive cycle.

Index Terms—Fuel cell hybrid electric vehicles, model predic-
tive control, optimal weight adaptation, energy management.

I. INTRODUCTION

Fuel cell hybrid electric vehicles (FCHEVs) represent a
promising avenue for mitigating the environmental concerns
associated with traditional internal combustion engine (ICE)
technology [1]. Despite their potential, FCHEVs still face
performance challenges that require attention. For instance, the
longevity of fuel cells (FCs) has yet to meet the targets set by
the U.S. Department of Energy (DoE), while the cost of hy-
drogen remains relatively high [2]. As such, there is a pressing
need for the development of sophisticated energy management
strategies aimed at not only prolonging FC lifetimes but also
minimizing hydrogen consumption [3]-[5].

The energy management strategies are typically categorized
into rule-based and optimization-based approaches [6]—[8],
while the latter includes off-line optimized control and online
real-time control. Off-line optimization methods are com-
monly utilized to assess the performance of online controllers.
In such applications, foreknowledge of driving patterns and
routes is assumed. However, online controllers become imper-
ative when future driving conditions are uncertain. Presently,
online power management strategies rely on rules and opti-
mization techniques. While rule-based strategies are concep-
tually straightforward, their performance often falls short of
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optimal. Moreover, incorporating various rules becomes chal-
lenging, particularly in real-time implementation, especially as
system complexity escalates.

Model predictive control (MPC) is widely embraced as an
effective approach for addressing multi-objective problems [9],
[10]. Also referred to as receding horizon control, MPC in-
volves predicting the optimal control input within a finite time
horizon based on current sampled states. In [11], [12], MPC
is formulated for FCHEVs to allocate power between the FC
and the battery, aiming to minimize hydrogen consumption,
FC degradation, and battery state of charge (SoC) variation.
However, determining the control weights of the corresponding
states and control inputs in their objective functions relies on
human-expert knowledge. Moreover, using fixed weights in
the objective functions results in power allocation with a fixed
ratio between the FC and the battery. Therefore, this approach
may not always yield optimal operational results.

To address this challenge, recent literature proposes adaptive
MPC methods [13], [14]. In [15], a linear parameter-varying
(LPV) prediction model is introduced for an MPC controller
in FCHEVs. This model dynamically updates online based on
variations in battery SoC. Similarly, [16] presents an adaptive
Pontryagin’s Minimum Principle (PMP) based MPC for an FC
hybrid railway vehicle. Here, an online adaptive estimated co-
state is integrated into PMP to optimize power distribution and
battery SoC. Additionally, MPC with adaptive tuning weights
offers a method for adaptive power allocation. In [17], an
adaptive weight determined by fuzzy logic rules is proposed
for the MPC energy management strategy, allocating power
between the battery and supercapacitor in a hybrid energy
storage system for vehicles. Inspired by these approaches,
this paper introduces adaptive tuning weights within the MPC
framework to enhance hydrogen economy, prolong FC life-
time, and mitigate SoC fluctuations.

The remainder of this paper is organized as follows. Sec-
tion II presents the FCHEV system architecture and com-
ponent models. Section III designs the MPC controller with
adaptive tuning weights. Section IV shows the simulation
results. Section V concludes this paper.
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Fig. 1. System architecture of FCHEV.

II. SYSTEM ARCHITECTURE AND COMPONENT MODELS

The FCHEV powertrain structure investigated in this paper
is depicted in Fig. 1, encompassing both a hybrid power
supply and a propulsion system. The hybrid power supply
comprises an FC, a battery, and a DC/DC converter. The
DC/DC converter serves to elevate the FC voltage for seamless
integration with the battery, enhancing overall efficiency and
dynamics. In addition, the propulsion system consists of a
traction inverter, electric machine, gear assembly, differential,
and driving wheel pair. Each component plays a crucial role
in facilitating the conversion of energy and the transmission
of power to propel the vehicle.

A. Plant Model

1) Fuel Cell Model: An FC is an energy conversion device
that converts hydrogen energy into electrical energy. Its output
voltage typically diminishes as the operating current increases,
a characteristic depicted by the polarization curve. In this
study, a 3.9 kW FC stack as referenced in [18], is utilized.
The polarization curve and its power curve, derived from a
generalized model accessible in MATLAB/Simulink, are illus-
trated in Fig. 2. It is evident that the voltage exhibits an almost
linear relationship with the current once the current surpasses
a certain threshold. This relationship can be expressed as:

Ufc(t) = f(ch(t))a (1)

where wg(t) represents the voltage of the FC stack and
it(t) denotes the current. The FC utilizes hydrogen energy to
generate electric energy, with the mass flow rate of consumed
hydrogen calculated as:

ifc (t)NfCMHQ
nkF ’

Here, Ni. represents the number of cells in the stack, My,
signifies the molar mass of hydrogen, n denotes the number
of moles of electrons per mole of hydrogen, and F' represents
the Faraday constant. The hydrogen mass flow rate is denoted
as fuo(ie) ().

2) Battery Model: In our case study, a lithium-ion battery
is employed, and its voltage can be modeled as a controlled
voltage source in series with a resistor and two RC branches,
as depicted in Fig. 3. Parameters such as Ry, R, C1, Ro,
and C represent the dynamic characteristics of the battery.
Additionally, the controlled current source, coupled with Ryg
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Fig. 2. Polarization curve of fuel cell stack.

Fig. 3. Equivalent circuit model of battery.

and Cgq, represents the remaining capacity of the battery. The
continuous state-space model of the battery can be derived
according to Kirchhoff’s law, which is described as:

. 1 1.

Uy (t) = oA up(t) + azb(t),

. B 1 1.

ia(1) =~ g, v + g ol0): 3)
. T 1

tsoc(t) = = g toeD) = g ie(0)

ub(t) = Eoc(usoc) - Roib(t) - Ul(t) — UQ(t).

In this context, u1(t) and us(t) symbolize the voltages across
the capacitors C7 and Cy, while ug..(t) represents the equiv-
alent voltage corresponding to the SoC. The value of ugoc(t)
is constrained between 0 and 1, indicating the SoC ranging
from 0 to 100%. uy(t) denotes the battery terminal voltage,
and 7y, (t) refers to the battery current. Furthermore, Ey.(usoc)
stands for the open-circuit voltage (OCV), expressed as a
function of the battery SoC. Typically, the OCV is measured as
a static variable and the OCV data of a battery cell is retrieved
from [18] and then scaled to represent a module. Therefore,
the OCV of the scaled battery module is graphically depicted
in Fig. 4. The OCV ranges from 38.5 V to 48.5 V with an
SoC from 0 to 100%. Furthermore, the OCV exhibits nearly
linear behavior when the SoC varies from 20% to 80%.

3) Vehicle Model: For simplification, the vehicle propulsion
system is modeled as a current load controlled by the current
demand of the vehicle system. Within this framework, the
current load is computed from the total power demand, which
is the summation of the wheel power demand and the auxiliary
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Fig. 4. Relationship between OCV and SoC.

power. The wheel power is described by:

Funeel(t) =0.5pa1,Cqv? (t) + ma(t)+

mg (sina(t) + C; cos a(t)), 4)

Pwheel(t) :theel(t>v(t) + Pauxa
where p,ir, Cq, Cy, m, and g represent the air density, air
resistance coefficient, rolling resistance coefficient, vehicle
mass, and gravitational constant, respectively. v(¢) and a(t)
are the vehicle speed and acceleration, respectively, while a(t)
denotes the road slope. Additionally, the auxiliary power is
denoted as P, ,x.

4) DC/DC Converter Model: A boost converter serves as
the DC/DC converter to bridge the voltage gap between the FC
and the battery. The current change rate of the boost converter
can be expressed as

:iboost (t) = AZ'boost (t)a (5)

where ipoost(t) represents the current through the boost con-
verter at the battery side, and Aipoos () denotes the change
rate of inoost(t). At steady state, the following equation holds:

nboostufc(t)ifc (t) = Uup (t)iboost (t)a (6)

where Myo0st TEpresents the efficiency of the boost converter.
As the boost converter, battery, and the load are connected in
parallel, the current balance in the DC-link is governed by

Thoot (t) + Z‘b(t) = lload (t)a (7)

where 7104 (t) denotes the current demand of the vehicle, which
can be calculated as %1559 = i“;:l(g) with k, being a scaling

factor.

B. Controller Model

The controller operates in a discrete domain. By employing
Euler discretization with a sampling period of 7', we can obtain
the discrete state-space model. In the discrete domain, the
dynamics of the battery voltage and the SoC can be derived
from (3), as follows

T T
up(k+1) = (1 — C’1R1> up (k) + aib(k)a
2
s+ 1) = (1 _ 02R2> wa (k) + (k) (8)
T T
uSOC(k + 1) = <]. — C’Sdde) 'U,SOC(]C) — O‘d Zb(k)

Consequently, these three states are bounded as

U1, min < ul(k) g U1, max
U2,min g u2(k) g u2,max7 (9)
usoc,min g usoc(k) < usoc,max~

Similarly, the discrete state-space model of the boost con-
verter can be derived as

iboost(k + 1) = iboost(k> + TAibOOSt(k)a (10)
where Aipoost (k) is bounded
AZ‘boost,min < Aiboost(k) < A75boost,max~ (11)

III. ENERGY MANAGEMENT FRAMEWORK
A. Prediction Model

The objective of energy management is to regulate the
power distribution between the FC and the battery to enhance
hydrogen economy and FC lifetime, while minimizing SoC
fluctuations. Ignoring power loss of the DC/DC converter,
the output power equals the input power referring to the
FC power. Hence, controlling the FC power is reflected by
controlling the output power of the DC/DC converter. Since
the battery is directly connected to the output of the boost
converter, they share the same output voltage. Furthermore, the
current balance is governed by (7), requiring only one decision
variable, either ipoost(t) or ip(t), with the other indirectly
controlled. In our study, ipeost(t) is chosen as the decision
variable for energy management. To calculate ipoox(t), the
current change rate can be obtained by the MPC controller.
Consequently, the current change rate of the boost converter
is selected as the system input, while the output current of the
boost converter and the voltage across capacitor Cyg are chosen
as the state variables. The state-space equation is written in a
compact form as

zt = Az + Byu + Bqd, (12)

where 27 is the value of the state x at the next sample,
is the state vector at the current sample and w is the control
input vector, which can be described as & = [ipoost, Usoc) L s
u = Aiboost’d = tload-

B. Problem Formulation

To minimize hydrogen consumption, FC degradation, and
battery SoC fluctuations, the performance indicators are de-
fined:

(1) The battery SoC should be regulated between max-
imum and minimum values while fluctuating around the
reference ugocrer. Thus, the first objective is to minimize
||Usoc - usoc,refH;

(2) As indicated in (2), the mass flow rate of hydrogen in
an FC stack is proportional to its current. Therefore, to reduce
hydrogen consumption fi(ig)(¢), FC current ||i|| should
be minimized, which translates to minimizing the DC/DC
converter current ||ipoost||;

(3) FC degradation is influenced by the current change rate,
and minimizing ||Ai¢|| is necessary. Similarly, minimization




of ||Aig || is expressed as minimizing ||Aipoost|| Since iboost
is directly related to i.

In summary, with weight coefficients w;, ws, and ws intro-
duced, the cost function to be optimized is formulated as

0

min Zh(xk,uk)
uo,ul,...kzo (13)

hd 2
= min Z < w1 HUSOC»%( - Usoc,refH 2)
UQ,UT - 0 +wo ||iboost,k|| + w3 HAiboost,k”

The problem described in (13) is commonly addressed by
solving the optimization problem over a finite time horizon N
considering relevant constraints and system dynamics, while
continuously measuring the system state to recompute new
control sequences with updated information. This iterative
procedure can be expressed as

N-1
: T T
i kz:o ((xx — Tret) ' Q(@k — Tret) + up Ruy)
+z(N)"Pra(N),
s.t.xpr1 = Az + Buug + Bad, (14)
2(0) = o,
G(z,u) =0,
H(z,u) <0,

where ) and R are penalty matrices for the state and control
sequences, and Tf = [USOCM O]T. x( represents the system
state at the current time sample, G(x, u) comprises all equality
constraints, and H(x,u) represents all inequality constraints.
At each time sample k, the optimal sequence of states and
control inputs over a finite time horizon NV is defined as:

A
A {x(O),x(l),”' 7x(N)}, 15
{ ~u(N=1)}. )

C. Adaptive Tuning Weights

The true cost associated with using MPC with a set of
weights w = w1, ws,ws is defined as J¥ . (xg, uy). Following
simulations or experiments and evaluating the state and control
trajectories of the plant, the true cost function Jie can be ob-
tained. The objective of adaptive weight tuning is to determine
the optimal weights for the individual objective functions that
minimize the expected true cost, given a prior distribution of
initial conditions x(0). Therefore, the optimization problem
can be formulated as
(16)

* LW
w* = argmin Jy . (Tk, uk),

where w* represents the set of optimal weights, and the
expected true cost can be approximately calculated by the
average true cost:

Toue(@rue) = B [ (wr, u)]- (17)

(0)

Solving the problem formulated in (16) is computationally
expensive, and the expected true cost is a black-box to

the optimization variable w*. Consequently, the true cost is
approximated to evaluate the objective function by providing
a control input through solving (14) without constraints.

D. Implementation of MPC with Adaptive Tuning Weights

The entire procedure of MPC with the adaptive tuning
weights is summarized in Algorithm 1.

Algorithm 1: MPC with Adaptive Tuning Weights
Input: o, N
Output: «(0)
Set k£ = 0 for the time sample in a drive cycle;
while not at the end of the drive cycle do
Update the system state z;
Set the initial state z(k) = xo;
Obtain an optimal control sequence u by solving
problem (14) without constraints;
for j =1, <N, j++; do
Compute true cost at the 40 jteration
Tt (T U, )3
end
Solve the problem min J,, (=7, u);
Obtain the optimal weight w*;

Apply the optimal weight w* to the problem (14)
and obtain the optimal control sequences u*;
Apply the first element of the control sequences
u(0) as the control input at next time sample;

Return (0);
Letk:=k+1

end

IV. SIMULATION RESULTS

To verify the effectiveness of the formulated MPC with
the adaptive tuning weights, simulations are performed in
MATLAB 2023b on a PC equipped with a 4.2 GHz Intel Core
i-7700K and 64 GB RAM. The EPA Urban Dynamometer
Driving Schedule (UDDS) drive cycle is selected for the study
case. Vehicle parameters are referenced from [3] with a scaling
factor to scale down the power demand.

Fig. 5 depicts the simulation results for power allocation,
current allocation, FC current change rate, and battery SoC
under the UDDS drive cycle test. The controller endeavors
to minimize FC hydrogen consumption and battery SoC
fluctuation, effectively managing power distribution. The FC
operation power fluctuates around the load power with a small
change rate, as the FC current change rate remains within 20
Als. Particularly during the extra high-speed region and high
power demand phases of the drive cycle, the FC current change
rate hovers around 19 A/s. This allows the battery to handle the
high-frequency component in the power demand while the FC
primarily provides a smaller frequency portion. Additionally,
the battery SoC fluctuates around its reference value, set at
60% in the simulation.
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Fig. 5. Simulation results under UDDS drive cycle.

V. CONCLUSION

This paper proposes an energy management strategy based
on an MPC controller with adaptive tuning weights to ad-
dress three aspects of FCHEVs: hydrogen consumption, FC
degradation, and battery SoC fluctuation. The weights are
dynamically tuned using a moving horizon. The effectiveness
of the proposed MPC controller is validated through MATLAB

simulations under the UDDS drive cycle. Simulation results
show that the FC current change rate and the battery SoC
are effectively controlled within specified ranges while the
hydrogen consumption is minimized whenever feasible.
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