Great Lakes Symposium on VLSI 2024 (GLSVLSI'24)

Can Stochastic Computing Truly Tolerate Bit Flips?

Yutong Wang, Zhaojun Ni, Siting Liu* ShanghaiTech University

Outline

- Background: stochastic computing & stochastic circuits
- Bit-flip model and bit-flip error recovery of stochastic circuits
- Experiments & results
- Application
- Conclusion

Background: stochastic computing

- In stochastic computing (SC), information is encoded and processed by streams of random bits. The probability of 1(p) in the bit stream is used to represent the value (x).
- Binary representation: $(01000101)_2 \rightarrow 69$
- Stochastic computing (SC): 01000101 { 3/8 (unipolar) -1/4 (bipolar) x = 2p 1

$$(00000101)_2 \rightarrow 5$$

$$00000101 \left\{ \begin{array}{c} 2/8 \ (unipolar) \\ -2/4 \ (bipolar) \end{array} \right.$$

More resilient to bit flip errors

Background: stochastic circuits

■ Compared to conventional arithmetic circuits, the SC circuits are much simpler^[1].

A unipolar stochastic multiplier.

A bipolar stochastic multiplier.

Stochastic FSM implementing tanh function

More resilient to bit flip errors, based on empirical studies[2]

$$Y_{i} = \begin{cases} 0 \text{ when } 0 \leq S_{i} \leq \frac{N}{2} - 1 \\ 1 \text{ when } \frac{N}{2} - 1 < S_{i} \leq N \end{cases}$$

$$y = \frac{(\frac{1+x}{1-x})^{\frac{N}{2}} - 1}{(\frac{1+x}{1-x})^{\frac{N}{2}} + 1} = Stanh(\frac{N}{2}x)$$
$$\approx \frac{e^{\frac{N}{2}x} - e^{-\frac{N}{2}x}}{e^{\frac{N}{2}x} + e^{-\frac{N}{2}x}} = \tanh(\frac{N}{2}x)$$

Bit flip models of stochastic sequences

- Assume bit flips are Bernoulli events with probability P_E and they are indepedent
- Stochastic sequence with probability P_X , representing x
- \blacksquare Probability considering bit flips $P_X^{'}$

$$x' = P_X' = P_X(1 - P_E) + (1 - P_X)P_E = x + (1 - 2x)P_E$$
. (unipolar)
 $x' = (1 - 2P_E)x$. (bipolar)

 P_X $01000101..... \longrightarrow 01010101..... \longrightarrow 01010101.....$

Each bit has a probability of P_E to flip

Bit flip models of stochastic multipliers

■ Unipolar stochastic multipliers

$$a'b'$$

= $(1 - 2P_E)^2 ab$
+ $(1 - 2P_F)P_F(a + b) + P_F^2$.

■ Error recovery

Given a'b', cannot directly compute ab

■ Bipolar stochastic multipliers

$$a'b' = (1 - 2P_E)^2 ab$$

■ Error recovery

Given a'b', directly compute ab by a linear transformation

Recovery value =
$$\frac{Distorted\ value}{(1-2P_F)^2}$$

Not possible in conventional arithmetic!

Bit flip models of stochastic FSM

■ FSM-based stochastic circuits, Stanh as an example

Stochastic FSM implementing tanh function

$$y' = Stanh[\frac{N}{2}(1 - 2P_E)x]$$

■ Error recovery

$$y = \frac{\frac{1 + y^{'1-2P_E}}{1 - y^{'}} - 1}{\frac{1 + y^{'1-2P_E}}{1 - y^{'}} + 1}$$

Not possible in conventional arithmetic!

Experiments & Results

■ Verification of the bit-flip models for stochastic multipliers

Absolute error of stochastic multiplication with different bit flip rates in the (left) unipolar representation and (right) bipolar representation.

Error is 0 when

$$a = b = 0.5 \text{ or } \frac{a}{2a - 1} + \frac{b}{2b - 1}$$

= $P_F (a \neq 0.5, b \neq 0.5)$

Error is 0 when

$$a = 0 \text{ or } b = 0$$

Error recovery of bipolar stochastic multipliers

- Error recovery with different bit flip rates.
- 100 trials are performed, and RMSEs are measured.

Table 1. the RMSEs of stochasitc mulitpliers before and after error recovery

Bit-flip rate	0%	1%	5%	10%
Distorted	0.0011	0.0164	0.0514	0.0941
Recovered	N/A	0.0011	0.0015	0.0021

Stothcastic FSM models

■ Verification of the bit-flip model

— Original Stanh

Simulated Stanh

Predicted Stanh

Stothcastic FSM models (Cont'd)

Error recovery

Application in a multi-layer perceptron (MLP)

- A three-layer (784-256-256-10) MLP is implemented by the aforementioned SC components
- For each layer:

$$f_i(x_i) = \tanh (2(x_i \times w_i)),$$

■ Equation for the entire network:

output =
$$f_3(f_2(f_1(x)))$$
.

Error-free SC-based MLP circuit

SC-based MLP circuit with error injection

Error model of the SC accumulator

$$\mathbb{E}[sum] = \sum (2P_{X_k} - 1) = \sum x_k$$

$$sum^d = \sum x' = \sum (1 - 2P_E)x_k$$

$$= (1 - 2P_E)sum$$

Error-free SC-based MLP circuit

SC-based MLP circuit with error injection

Error model of the entire MLP circuit

$$f_i(x_i) = \tanh (2(x_i \times w_i))$$

$$output = f_3 (f_2(f_1(x)))$$

$$\Rightarrow$$

$$f_i^d(x_i) = \tanh (2(1 - 2P_E)^4(x_i \times w_i))$$

$$output^d = f_3^d (f_2^d (f_1^d(x)))$$

Error-free SC-based MLP circuit

SC-based MLP circuit with error injection

Verification of the bit flip model

■ A three-layer (784-256-256-10) MLP is implemented by the aforementioned SC components on MNIST dataset.

Table 2: Accuracies of simulated and predicted results under different bit-flip rates

Model	Bit flip rate (%)	Simulated accuracy (%)	Predicted accuracy (%)
Pre-trained MLP	0	97.77	-
	0	97.71	97.77
SC-MLP	1	97.33	97.75
3C-IVILP	5	96.92	97.48
	10	94.84	96.65

Error recovery of the SC-based MLP circuit

- An online layer-by-layer error recovery strategy is proposed
- For each layer:

$$f_{i}(x) = \frac{\frac{1 + f_{i}^{d}(x)^{\frac{1}{(1 - 2P_{E})^{4}}}}{1 - f_{i}^{d}(x)} - 1}{\frac{1 + f_{i}^{d}(x)^{\frac{1}{(1 - 2P_{E})^{4}}}}{1 - f_{i}^{d}(x)} + 1}$$

Conclusion and future work

- Bit-flip models of stochastic sequences and multiple stochastic circuits are established;
- Formulation are conducted and bit-flip error recovery is proved to be possible on bipolar stochastic arithmetics;
- Bit-flip error recovery on independent SC components shows a high accuracy;
- An online layer-by-layer error recovery strategy is proposed to deal with an SC-based MLP circuit. The accuracy is partially recovered.
- More factors will be considered in the future work to build more accurate SC bit-flip models.

Thank you for your attention!

Q&A