

Energy-Efficienct AI Acceleration through Approximation

ShanghaiTech University

School of Information Science and Technology

Speaker: Dr. Siting Liu

Outline

- Motivation
- Background
 - Approximation by quantization
- Hardware approximation
 - Stochastic computing (SC)
 - SC for neural network (NN) inference
 - SC for NN training
- Summary

Motivation


```
sitingliu - python - 64×20
(base) sitingliu@Sitings-MacBook-Air ~ % python
Python 3.9.13 (main, Aug 25 2022, 18:29:29)
[Clang 12.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more inform
ation.
>>> 0.1+0.2
```


Motivation


```
(base) sitingliu@Sitings-MacBook-Air ~ % python
Python 3.9.13 (main, Aug 25 2022, 18:29:29)
[Clang 12.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more inform
ation.
>>> 0.1+0.2
0.30000000000000004
>>>
```


Number Representation

- Fractions
 - Floating-point numbers (IEEE 754 standard single precision)

1 sign bit		t 8 bits	23 bits
	S Exponent		Significand/Mantissa

$$(-1)^S \times (1. Significand)_2$$

× $2^{Exponent-127}$

 Limited precision & rounding introduce accuracy loss

Motivation

- Digital systems are inherently inaccurate;
- Al applications can tolerate plenty inaccuracy;
 - Resilience from application and computation patterns.

App. no single correct answer

- E.g. recommendation systems, search query, etc.
- · Optimization problems such as neural network training.

Computation patters

- Map complex features (images, text) to several classes.
- Nonlinear functions have strong saturation effects.

Motivation

- Digital systems are inherently inaccurate;
- Al applications can tolerate plenty inaccuracy;
- Trade accuracy for energy efficiency, performance, area, etc. through

Approximation

Approximation at Different Levels

Software/model

- Pruning
- Quantization
- Distillation
- Low-rank approximation
- •

Hardware/architecture

- Analog computing
- Approximate arithmetic circuits
- Stochastic computing
- •

Approximation at Different Levels

Software/model

- Pruning
- Quantization
- Distillation
- Low-rank approximation
-

Hardware/architecture

- Analog computing
- Approximate arithmetic circuits
- Stochastic computing
- •

Quantization—Motivation

 Rough energy numbers (in 45-nm technology node) from "Computing's Energy Problem, M. Horowitz, ISSCC, 2014"

INT				
ADD				
8 bit	0.03 pJ			
32 bit	0.1 pJ			
MULTI				
8 bit	0.2 pJ			
32 bit	3 pJ			

FP	
FADD	
16 bit	0.4 pJ
32 bit	0.9 pJ
FMULTI	
16 bit	1 pJ
32 bit	4 pJ

Memory		
Cache	(64 bit)	
8 KB	10 pJ	
32 KB	20 pJ	
1 MB	100 pJ	
DRAM	1.3-2.6 nJ	

Quantization—Hardware Implication

Quantization—Conventinoal Method

Scale, (shift) and round

Quantization—Scale & Round

Floating-point → integer arithmetics

Quantization—Arithmetic Change

Floating-point → integer arithmetics

$$\mathbf{x} * \mathbf{w} = \sum x_i * w_i \qquad \longrightarrow \qquad (s_x \mathbf{x}) * (s_w)$$

 $\operatorname{round}(s_{\chi}\mathbf{x}) * \operatorname{round}(s_{w}\mathbf{w}) = \sum \operatorname{round}(s_{\chi}x_{i}) * \operatorname{round}(s_{w}w_{i})$

Quantization—Push the Limits

- Floating-point → INT4/FP8/FP4/Binary
 - But difficult to build a single piece of hardware to support all formats with different bit widths
- Another dimension: progressive precision in stochastic computing

Stochastic computing (SC) uses serial binary bits to represent a value.

Stochastic Computing & Progressive Precision

Stochastic computing (SC) employs probability to encode a value.

4/8 = 0.5

 Since each bit is generated randomly, increasing the sequence length improves the accuracy.

Stochastic Computing—Basic Elements

Simple logics gates perform complex arithmetics

Stochastic multiplier (AND gate)

FSM implements tanh function in SC

An SC based-Neural Network Implementation

Model	Bit flip rate	Accuracy
MLP	0	97.77
	0	97.71
CC MI D	1	97.33
SC-MLP	5	96.92
	10	94.84

Bipolar		
stochastic multipliers	Layer 1	Layer 2

.. ... Layer N

Stochastic Computing for NN Training

Gradient descent (with momentum) as optimizer

Gradient descent (GD) searching for local minimum.

• The optimization result is an accumulation of multiple steps of the gradients $g_i = \nabla E(\mathbf{w}_i)$.

SC-GDC Design

- Implement the iterative accumulation $w = \sum g_k$ in SC.
- g_k is stochastically quantized to -1/0/+1 and accumlated by a counter.

Hardware evaluation of the signed SC-GDC array training a 784-128-128-10 NN

Metrics	SC-GDCs	Fixed-point
Step size	2^{-10}	2^{-10}
Epochs	20	20
Min. time (ns)	$1.6 imes 10^6$	$4.7 imes10^6$
EPO (fJ)	1.2×10^{7}	1.1×10^{8}
TPA (images/ $s/\mu m^2$)	5.7×10^{1}	1.5
Aver. test Accu.	97.04%	97.49%

SC-GDM Design

Experiments & Results

 Can train more complex NN architecture such as VGG16, ResNet18 and MobileNet V2 with CIFAR10 dataset.

Test accuracy (%)	VGG16	ResNet18	MobileNetV2
SC-GDM	90.23	91.36	88.51
Floating-point	90.55	91.85	88.82

Take-aways

- With numerical approximation, the computation efficiency can be improved;
- Stochastic computing (SC) is a numerical approximation technique that represents a value by the probability of a binary bit stream;
- SC is able to achieve bit-flip-resilient NN inference and energy-efficient and high-performance training;
- It achieves a higher energy efficiency and performance compared with traditional computing paradigm.

Thanks for your attention!

Q & A