CS253 Project 1

Due: 23:59 October 8

The goal of this assignment is to gain hands-on experience finding vulnerabilities in code and mounting buffer overflow attacks.
In this project, you are given the source code for two exploitable programs which are to be installed with setuid root in a virtual
machine we provide. For each target, you’ll have first identify a vulnerability (buffer overflow, integer overflow, etc) in each
program. Next, you’ll write an exploit that takes advantage of that vulnerability. Running a successful exploit as an unprivileged
user, will yield a root shell even though we didn’t run our xploit as root!

The Environment

You’ll run your exploits in a virtual machine (VM) emulated using QEMU. This serves two purposes. First, the vulnerable
programs contain real, exploitable vulnerabilities and we strongly advise against installing them with setuid root on your machine.
Second, everything from the particular compiler version, to the operating system and installed library versions will affect the
exact location of code on the stack. The VM provides an identical environment. The VM is configured with Debian GNU/Linux
11 (bullseye), with ASLR (address randomization) turned off. It has a single user account “user” with password “cs253”, but
you can temporarily become the root user using sudo. The exploits will be run as “user”” and should yield a command line shell
(/bin/sh) running as “root”.

1 Setting up your VM

1. You will first need to install QEMU. Follow the instructions on QEMU’s website here (https://www.qgemu.org/
download/). MacOS users will need to first install Homebrew. You can find instructions on doing that here (https:
//brew.sh/).

2. Download the VM from the Shanghaitech epan https://epan.shanghaitech.edu.cn/1/vF3iKt|(it’s called "VM
box”).

3. Extract the tarball. You can usually do this by simply trying to open it. If you’re on windows, you might have to right
click on the download and select extract from there. The tarball contains a file disk.img, which is an QEMU QCOW
Disk Image, and a couple helpful scripts (run_gemu. sh and ssh_to_gemu. sh).

4. Launch the machine using the included run gemu.sh script. The script just invokes the following line
gemu-system-x86_64 disk.img -m 2G -nic user,hostfwd=tcp::5555-:22 -nographic

* The -m 2G option launches the VM with 2 Gigabytes of memory.

e -nic user, hostfwd=tcp::5555-:22 option forwards internet traffic on your computer’s port 5555 to the
VM’s port 22. This allows you to ssh into your VM.

* The -nographic option makes QEMU forward the output of your VM to your terminal. You can launch your

VM without this option but we don’t recommend it. If you do, QEMu will create a new window for your VM. See
QEMU’s documentation for more information on this site. https://www.qemu.org/docs/master/

5. Once the VM has booted, login with username “user” and password “cs253”. It may take a minute or two for your VM
to launch.

* Your home directory contain the folder “projl1” which has the targets and starter code for the project. You can also
find copies of the code on piazza.

https://www.qemu.org/download/
https://www.qemu.org/download/
https://brew.sh/
https://brew.sh/
https://epan.shanghaitech.edu.cn/l/vF3iKt
https://www.qemu.org/docs/master/

6. The VM comes with a set of tools pre-installed (curl, wget, openssh, gcc, vim etc), but feel free to install additional
software. For example, to install the emacs editor, you can run:

$ sudo apt-get install emacs

2 Using your VM

After opening and logging into your VM, you can directly edit the files with your text editor of choice (ex. nano, vim, emacs,
etc). However, you may have a smoother terminal experience using your VM over ssh because gemu doesn’t use your entire
terminal window. The run gemu.sh script starts the vm and forwards traffic on your machine’s port 5555 to the VM’s port 22. We
can ssh into the vm with the following:

1. Before moving on, make sure your v is running and you’ve logged into it.

2. Open a new terminal window. This new window needs to be running on your local machine (it should not be running
on the VM).

3. Now you can run ssh_to_gemu. sh and enter in "cs253” as the password. You should be logged in to the VM from
your second terminal window.

4. Now we need to build and install the targets:
$ cd projl/targets

$ make && sudo make install
password: cs253

This will compile all of the target programs, set the executable stack flag on each of the resulting executables, and
install them with setuid root in /tmp.

Note: When you reboot your machine, files in the /tmp directory will be automatically deleted. This means you need
to redo this everytime you restart the vm.

5. Write, build and test your exploits:

$ cd ../xploits

...edit,test...
$ make
$./xploitl

The header file shellcode.h, provides a shellcode in the static variable static const char* shellcode.

6. When you’re done, properly shutoff the vm with

$ sudo systemctl poweroff

Not properly shutting down may cause problems the next time you open the vm.

3 Attack

Both exploits will take an in depth understanding of how functions get called and returned from and how that interacts with the
rsp (stack pointer), rbp (base pointer), and rip (instruction pointer). You will also need to use gdb to find a variety of memory
addresses on the stack (see| Stanford CS 107’s guide to gdb).

Successful Exploit

Successful exploits will result in a shell with root access:

user@cs253:~/projl$./xploits/xploitl
whoami
root

https://web.stanford.edu/class/cs107/resources/gdb

4 Submission
1. Open up proj1/ID.csv and fill in comma-separated line with your student number and Name (for example
2025233000, SanSi Zhang).
2. Navigate to proj1/ directory

3. Runmake submission. This will create a gzipped tarball (. tar . gz) that contains the contents of the xploits/ directory
and ID.csv. Make sure that if you extract your submission tarball:

* In the extracted xploits/ directory, running make with no arguments should yield xploitl and xploit2
executables in the same directory.

¢ The tarball must include the file ID. csv filled out.

4. In order to move your tarball from your vm to your local computer, open up a local terminal (not one on the vm!), and
run

scp -P 5555 user@localhost:”/projl/submission.tar.gz
and login if asked. /proj1/submission.tar.gz should be the path of where your tarball lives on your vm.

Note: Due to the size of the class, the correctness of your submission will be graded primarily by script. As a result, following
the the submission format is important. We really, really want to give you full credit! Help us help you!

S Troubleshooting

Windows Troubleshooting
* Adding gemu to path: You might need to add gemu to your path.

* Run Project 1 through WSL: Try running QEMU using the Windows Subsystem for Linux (WSL). Follow the instruc+
tions here|to install WSL. Then install QEMU on your WSL instance using sudo apt-get install gemu-system.
The package name is gemu-system, not gemu. The gemu package doesn’t have all the required files.

* Try running gemu on myth (instructions below).

VSCode

You can use VSCode to SSH into the VM and edit your code; however, students have historically had trouble using VSCode
over SSH with the VM. There’s not a lot of support course staff can give since VSCode isn’t required for this assignment and
the issues stem from VSCode rather than our starter code. If you choose to work on this assignment in VSCode and run into
VSCodespecific issues (such as "Could not establish connection to [localhost]"), here are some troubleshooting tips:

* Restart VSCode server: Open the command prompt window (ctrl/command + shift + P). Run Remote-SSH: Kill
VS Code Server on Host.... Then try reconnecting.

* Redownload VSCode server: Inside of the VM, runrm -r .vscode-server/.. Then try reconnecting. This will
completely re-download the VSCode server on the VM.

* Make sure the VM is open and logged into in a different terminal window.
* Verify that you can ssh into the VM in a different terminal window (not with VSCode).
* Increase partition size: Make sure you’ve increased the space for the partition for the VM (See below)

* Try different ssh version: Change the version of your remote ssh extension - either make sure it’s completely updated
or you could also try changing your ssh extension to an older version.

* Close the VM with quit or ctrl+a X and reopen it. Try connecting again.
Ultimately, these problems are often problems with VSCode and not with our starter code, so there’s not one overarching fix

we can provide beyond troubleshooting suggestions. If VSCode becomes too troublesome, it might be easier to complete the
assignment without it.

https://learn.microsoft.com/en-us/windows/wsl/setup/environment
https://learn.microsoft.com/en-us/windows/wsl/setup/environment

Increasing Space in Partition

If your VM is running out of space, here are some steps you can follow to increase the partition size.

1. Backup any files you’ve made/edited just in case this process fails and corrupts them.
2. Run sudo fdisk /dev/sda

3. Type n to create a new partition, then select the default partition type (p). Enter the last sector of the disk to use for the
new partition (3), then select the default options for the first sector and partition size (hit enter twice). Type a to toggle
the bootable flag, then select the new partition number 3. Type w to save and exit.

4. Now, you should be able to see a new partition if you run 1sblk:

NAME
hifs (0]
sda
sdal
sda2
sda3
sdab
sr0

[o <N B Y,

00 00 00 00 00 B
[T & 3 B VS I S R = I -)

:MIN RM SIZE RO

1 4K
0 14G
0 3G
0 1K
0 10G
0 975M
1 1024M

o oo o o000

use sudo reboot.

TYPE MOUNTPOINT
disk

disk

part /

part

part

part [SWAP]

rom

. Now copy everything on /dev/sdal to dev/sda3: sudo dd if=/dev/sdal of=/dev/sda3 bs=4M
. Next, open the /etc/fstab file in a text editor: sudo nano /etc/fstab
. Add this line to the bottom: /dev/sda3 / ext4 defaults 0 1

. Now reboot, and you should see the home dir mounted on /dev/sda3 under the Welcome to GRUB! line. To reboot,

9. Resize to the new partition using sudo resize2fs /dev/sda3. If you get the error Please run ’e2fsck -f
/dev/sda3’ first, add in the -f flag and run again.

	Setting up your VM
	Using your VM
	Attack
	Submission
	Troubleshooting

