CS 253 Cyber Security
Control Hijacking Defenses

—® ShanghaiTech University &—

SIST - Yuan Xiao 1

Admin

* Project 1 released. Visit course website to
download needed materials.

- DDL: 10/8 (Wed) 23:59

Recap: control hijacking attacks

Stack smashing: overwrite return address or function pointer
Heap spraying: reliably exploit a heap overflow

Use after free: attacker writes to freed control structure,
which then gets used by victim program

Integer overflows

Format string vulnerabilities

The mistake: mixing data and control

* An ancient design flaw:
— enables anyone to inject control signals

e 1971: AT&T learns never to mix control and data
SIST - Yuan Xiao

Control hijacking attacks

The problem: mixing data with control flow in memory

arguments

Y
stack frame

data overwrites
return address

Later we will see that mixing data and code is also the
reason for XSS, a common web vulnerability

SIST - Yuan Xiao

Preventing hijacking attacks

Fix bugs:
— Audit software
* Automated tools: Coverity, Infer, ...

— Rewrite software in a type safe languange (Java, Go, Rust)
 Difficult for existing (legacy) code ...

Platform defenses: prevent attack code execution Transform:

Complete Breach
Harden executable to detect control hijacking ‘

— Halt process and report when exploit detected

— StackGuard, ShadowStack, Memory tagging (ASan, MTE), ...

SIST - Yuan Xiao 6

Denial of service

Platform Defenses

SIST - Yuan Xiao

Marking memory as non-execute (DEP)

Prevent attack code execution by marking stack and heap as non-executable

NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM
— disable execution: an attribute bit in every Page Table Entry (PTE)

 Deployment:
— All major operating systems
* Windows DEP: since XP SP2 (2004) (Visual Studio: /NXCompat[:NO])

 Limitations:

— Some apps need executable heap (e.g. JITs).

— Can be easily bypassed using Return Oriented Programming (ROP)

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

| stack | libc.so

» exec()
printf()

“/bin/sh”

SIST - Yuan Xiao

ROP: in more detail

To run /bin/sh we must direct stdin and stdout to the socket:

dup2(s, 0) // map stdin to socket
dup2(s, 1) // map stdout to socket
execve("/bin/sh", 0, 0);

Y "/bin/sh"
Gadgets in victim code: I sEaE{ amsi) dup2(s, 1)

Stack (set by attacker):
ret-addr

sisT-Stackapointer moves up on pop 10

ROP: in even more detail

execve("/bin/sh", 0, 0): implemented using gadgets in victim code:

0x408100 0x408200 0x408300 0x408400
5f | pop rdi 5e| pop rsi 58| pop rax syscall
c3 | ret 5a| pop rdx c3| ret ret
c3| ret
Stack (set by attacker):

overflow-str | 0x408100| Ox6F2500 | 0x408200| 0 | O | 0x408300 59 | 0x408400

new (rdi «— address (rsi «<— 0) (rax «— 59)
ret-addr of “/bin/sh”) | [rdx < 0) syscall #59 .

What to do?? Randomization
e ASLR: (Address Space Layout Randomization)

— On load: randomly shift base of code & data in process memory
= Attacker does not know location of code gadgets

— Deployment: (/DynamicBase)

* Since Windows 8: 24 bits of randomness on 64-bit processors
* Base of everything must be randomized on load:

— libraries (DLLs, shared libs), application code, stack, heap

e (Other randomization ideas (not used in practice):

— Sys-call randomization: randomize sys-call id’s
— Instruction Set Randomization (ISR)

A very different idea: kBouncer

pop rdi /[v pop rsi J’ pop rax J’ syscall keme|]
ret pop rdx ret : ret

~
o)
o
o
>
0
D
—

ret

Observation: abnormal execution sequence
e ret returns to an address that does not follow a call

Idea: before a syscall, check that every prior ret is not abnormal
e How: use Intel’s Last Branch Recording (LBR)

SIST - Yuan Xiao 13

A very different idea: kBouncer
I::tp rdi J Egg :Zix J’ Irp(gcp rax J’ Z/icall kernel]
Inte’s Last Branch Recording (LBR):

ret
e store 16 last executed branches in a set of on-chip registers (MSR)

~
oy
o
c
>
0
)
=

e read using rdmsr instruction from privileged mode

kBouncer: before entering kernel, verify that last 16 rets are normal
* Requires no app. code changes, and minimal overhead
* Limitations: attacker can ensure 16 calls prior to syscall are valid

uan Xiao

Hardening the executable

SIST - Yuan Xiao

15

Run time checking: StackGuard

* Many run-time checking techniques ...
— we only discuss methods relevant to overflow protection

e Method 1: StackGuard
— Run time tests for stack integrity.

— Embed “canaries” in stack frames and verify their integrity
prior to function return.

Frame 2 Frame 1

top
<<

stack
SIST - Yuan Xiao 16

Canary Types

 Random canary:
— Random string chosen at program startup
— Insert canary string into every stack frame

— Verify canary before returning from function
* Exit program if canary changed. Turns potential exploit into DoS.

— To corrupt, attacker must learn/guess current random string

e Terminator canary: Canary = {0, newline, linefeed, EOF}
— String functions will not copy beyond terminator
— Attacker cannot use string functions to corrupt stack.

StackGuard (Cont.)

e StackGuard implemented as a GCC patch

— Program must be recompiled

 Minimal performance effects: 8% for Apache

StackGuard enhancement: ProPolice

* ProPolice - sincegcc3.4.1. (-fstack-protector)
— Rearrange stack layout to prevent ptr overflow.

String args
Growth ret addr Protects pointer args and local
SFP pointers from a buffer overflow
Stack local string buffers
Growth local non-buffer variables } pointers, but no arrays

copy of pointer args 19

MS Visual Studio /GS (BufferSecurityCheck)

Compiler /GS option:
— Combination of ProPolice and Random canary.
— If cookie mismatch, default behavior is to call _exit(3)

Function prolog: Function epilog:
sub esp,4 //allocate 4 bytes for cookie mov ecx, DWORD PTR [esp+4]
mov eax, DWORD PTR ___ security_cookie Xor ecx, esp
Xor eax, esp // xor cookie with current esp call @__security_check _cookie@4
mov DWORD PTR [esp+4], eax // save in stack add esp, 4

Protects all stack frames, unless can be proven unnecessary

SIST - Yuan Xiao 20

Summary: Canaries are not full proof

e (Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

— Some stack smashing attacks leave canaries unchanged: how?
— Heap-based attacks still possible

— Integer overflow attacks still possible

Even worse: canary extraction

A common design for crash recovery:

 When process crashes, restart automatically (for availability)
e Often canary is unchanged (reason: relaunch using fork)

eooe A ANARY a:je;r crash
Danger:

* canary extraction
byte by byte

BANARY crash

ret
addr

ret

CANARY

ddr No crash

No crash
25

Similarly: extract ASLR randomness

A common design for crash recovery:

 When process crashes, restart automatically (for availability)
e Often canary is unchanged (reason: relaunch using fork)

Danger:

Extract ret-addr to
de-randomize
app. code ASLR

ret
A
ce o A NARY ~ddr crash

co e BANARY crash

ret
addr
ret
C
oo A NARY ~ddr No crash

No crash
26

More methods: Shadow Stack

Shadow Stack: keep a copy of the stack in memory
* Oncall: pushret-address to shadow stack on call

* Onret: checkthat top of shadow stack is equal to
ret-address on stack. Crash if not.

e Security: memory corruption should not corrupt shadow stack

Shadow stack using Intel CET: (supported in Windows 10, 2020)
 New register SSP: shadow stack pointer

» Shadow stack pages marked by a new “shadow stack” attribute:
only “call” and “ret” can read/write these pages

ARM Memory Tagging Extension (MTE)

Idea: (1) every 64-bit memory pointer P has a 4-bit “tag” (intop byte)
(2) every 16-byte user memory region R has a 4-bit “tag”

Processor ensures that: if Pis used toread R then tags are equal
— otherwise: hardware exception

Tags are created using new HW instructions:
 LDG, STG: load and store tag to a memory region (used by malloc and free)

 ADDG, SUBG: pointer arithmetic on an address preserving tags

Tags prevent buffer overflows and use after free

Example: tags (4 bits): 8 B B B 7 7 5 5
g pra8 16 bytes

char *p = new char(40); // p =0xB000 6FFF FFF51240 (*p tagged as B)

p[50] ="a’; // B#7 = tag mismatch exception (buffer overflow)
delete [] p; // memory is re-tagged from B to E
p[7] = ‘@’; // B#E = tag mismatch exception (use after free)

Note: out of bounds access to p[44] at (7) will not be caught.

uah Xfao 31

AddressSanitizer (ASan): a software tool

For every 8 bytes of usable memory,
allocate one byte in shadow to record its allocation status:

 0: all 8 bytes are allocated (e.g., by malloc)
e 1<k <7: first k bytes are allocated
* negative number: 8 bytes should not be accessed

Compiler places a guard before every memory access. Example:

ShadowAddr = (Addr >> 3) + ShadowOffset; // address in shadow mem
if (*ShadowAddr !=0) ReportAndCrash(Addr); // crash if not fully alloc.
t = *Addr; // program can now read/write address Addr

Shadow memory eats up 1/8% of physical memory = expensive

e ASan is mostly used when fuzzing a program (e.g., Chrome)

https://storage.googleapis.com/gweb-research2023-r§1léTdigf63B(.?)%Is/pdf/37752.pdf

32

AddressSanitizer (ASan): a software tool

Using ASan to detect a buffer overflow on stack or heap:

tags: -1 000004 -1 000000006 -1 0000 -1
in shadow 5x8+4 = 44 bytes 8x8+6 = 70 bytes 4x8 = 32 bytes
memory

overflow will cause an access to a red zone (rz) = crash program

after mem?2 is freed:

mem1 rz freed mem?2 rz mem3 rz
tags: -1 000004 -1 -1-1-1-1-1-1-1-1 0000 -1

use-after-free at mem2 = crash program

33

https://storage.googleapis.com/gweb-resea rch2023-r?1|g:ﬁgf63B({%%Is/pdf/37752.pdf

Control Flow Integrity (CFl)

SIST - Yuan Xiao

34

Control flow integrity (CFI) eevos,..

Ultimate Goal: ensure control flows as specified by code’s flow graph

void HandshakeHandler(Session *s, char *pkt) {

s->hdlr(s, pkt)

Compile time: build list of possible call targets for s->hdIr

Run time: before call, check that s->hdlr value is on list

Coarse CFl: ensure that every indirect call and indirect branch
leads to a valid function entry point or branch target

SIST - Yuan Xiao 35

Coarse CFl: Control Flow Guard (CFG) (windows 10

Coarse CFl:

* Protects indirect calls by checking against a bitmask of all valid
function entry points in executable

rep stosd

mov €51, [esl] ™,
mov ecx, esi ; Targffﬂ—_’____,,,————————
push 1

call @ guard check _icall@4 ; gquard check icall(x)
call esi

add esp, 4

Xov eax, eax

SIST - Yuan Xiao

ensures target is
the entry point of a
function

36

Coarse CFl using EndBranch (intel) and BTI (arm)

New instruction EndBranch (Intel) and BTl (ARM): %

* After anindirect JMP or CALL: [I— p—
the next instruction in the %
instruction stream must be EndBranch

* If not, then trigger a #CP fault x EndBranch |+
and halt execution §

* Ensures an indirect JMP or CALL can only go - | add ebp, 4
to a valid target address = no func. ptr. hijack %

(compiler inserts EndBranch at valid locations)

CFG, EndBranch, BTI:

f ~r—i

limitations

Poor

Pr
fu

rep s

* Does not prevent attacker from causing
a jump to a valid wrong function

e Hard to build accurate control

mowv
mov

flow graph statically

push
call
call
add
Xov

valid

of a

T @ _guUdrad_CnecR_ICaIIE@y ; (quarag CNeCR_ICJIITR))

esi

esp, 4
eax, eax

SIST - Yuan Xiao

38

}

void LoginHandler(Session *s, char *pkt) {

}

An example

void HandshakeHandler(Session *s, char *pkt) {

s->hdlr = &LoginHandler;

... Buffer overflow over Session struct ...

bool auth = CheckCredentials(pkt);
s->dhandler = &DataHandler;

void DataHandler(Session *s, char *pkt);

SIST - Yuan Xiao

Attacker controls
handler

static CFl: attacker can call
DataHandler to
bypass authentication

39

Cryptographic Control Flow Integrity (CCFl)
(ARM PAC - pointer authentication)

Threat model: attacker can read/write anywhere in memory,

program should not deviate from its control flow graph

CCFl approach: Every time a jump address is written/copied anywhere in memory:
compute 64-bit AES-MAC and append to address

On heap: tag = AES(k, (jump-address, 01l source-address))

on stack: tag-= AES(k, (jump-address, 11l stack-frame))
Before following address, verify AES-MAC and crash if invalid

Where to store key k? In xmm reﬁgteYrs X(not memory) 0
- Yuan Alao

Back to the example

void HandshakeHandler(Session *s, char *pkt) {

s->hdlr = &LoginHandler;

... Buffer overflow in Session struct ... <

}

void LoginHandler(Session *s, char *pkt) {
bool auth = CheckCredentials(pkt);

s->dhandler = &DataHandler;
}

void DataHandler(Session *s, char *pkt);
SIST - Yuan Xiao

Attacker controls
handler

CCFI: Attacker cannot
create a valid MAC for
DataHandler address

41

THE END

	幻灯片 1
	幻灯片 2: Admin
	幻灯片 3: Recap: control hijacking attacks
	幻灯片 4: The mistake: mixing data and control
	幻灯片 5: Control hijacking attacks
	幻灯片 6: Preventing hijacking attacks
	幻灯片 7
	幻灯片 8: Marking memory as non-execute (DEP)
	幻灯片 9: Attack: Return Oriented Programming (ROP)
	幻灯片 10: ROP: in more detail
	幻灯片 11: ROP: in even more detail
	幻灯片 12: What to do?? Randomization
	幻灯片 13: A very different idea: kBouncer
	幻灯片 14: A very different idea: kBouncer
	幻灯片 15
	幻灯片 16: Run time checking: StackGuard
	幻灯片 17: Canary Types
	幻灯片 18: StackGuard (Cont.)
	幻灯片 19: StackGuard enhancement: ProPolice
	幻灯片 20: MS Visual Studio /GS (BufferSecurityCheck)
	幻灯片 24: Summary: Canaries are not full proof
	幻灯片 25: Even worse: canary extraction
	幻灯片 26: Similarly: extract ASLR randomness
	幻灯片 29: More methods: Shadow Stack
	幻灯片 30: ARM Memory Tagging Extension (MTE)
	幻灯片 31: Tags prevent buffer overflows and use after free
	幻灯片 32: AddressSanitizer (ASan): a software tool
	幻灯片 33: AddressSanitizer (ASan): a software tool
	幻灯片 34
	幻灯片 35: Control flow integrity (CFI) [ABEL’05, …]
	幻灯片 36: Coarse CFI: Control Flow Guard (CFG) (Windows 10)
	幻灯片 37: Coarse CFI using EndBranch (Intel) and BTI (ARM)
	幻灯片 38: CFG, EndBranch, BTI: limitations
	幻灯片 39: An example
	幻灯片 40: Cryptographic Control Flow Integrity (CCFI) (ARM PAC - pointer authentication)
	幻灯片 41: Back to the example
	幻灯片 42: THE END

