
CS 253 Cyber Security
Security Principles and OS Security

ShanghaiTech Univers i ty

SIST - Yuan Xiao 1

Any single buffer overflow, use-after-free, or null pointer

dereference might allow an attacker to run malicious code

We’re getting better at finding and preventing bugs, but

vulnerabilities are still common. There will always be bugs.

Example: In January 2021, Qualys discovered a heap overflow

in sudo that allows users to run programs with the security

privileges of another user. The bug was introduced in 2011

(CVE-2021-3156) and affected Linux, Mac OS, and BSD.

Vulnerabilities are Inevitable

SIST - Yuan Xiao 2

Python language is written in C and has itself had vulnerabilities

CVE-2016-5636: Integer overflow in the get_data function

allows attackers to trigger a heap-based buffer overflow in

zipimport.c by specifying a negative data size

Bug could be triggered inside of interpreted Python scripts

Even Safe Languages have Bugs!

SIST - Yuan Xiao 3

Systemsmustbedesignedtobe

resilient in thefaceofbothsoftware

vulnerabilitiesandmalicioususers

SIST - Yuan Xiao 4

Threat model: A model of who your attacker is, what their motivations

are, and what resources they have available to them

Why do people attack systems?

• Money

• Intellectual Property Theft

• Politics or Retaliation

• Fun, watching the world burn

What resources do those attackers have?

Need to be asking questions like:

• What are the most relevant threats?

• What do I need to do to safeguard against these threats?

Threat Modeling

SIST - Yuan Xiao 5

PART ONE

Security Pr inciples

SIST - Yuan Xiao 6

Example: What if there’s a vulnerability in Chrome’s Javascript interpreter?

• Chrome should prevent malicious website from accessing other tabs

• OS should prevent access to other processes

(e.g., Password Manager)

• HW should prevent permanent malware

installation in device firmware

• Network should prevent malware

from infecting nearby computers

Defense in Depth

SIST - Yuan Xiao 7

Systems should be built with security protections at multiple layers

Users and system components should only

have access to the data and resources

needed to perform routine, authorized tasks

RealWorld Examples:

• Faculty can only change grades for

classes they teach

• Only employees with background checks

have access to classified documents

Least Privilege

SIST - Yuan Xiao 8

Faculty can only change grades for classes they teach.

Who are we really protecting against?

• Faculty themselves — curious or even

malicious — could cause widespread

damage

• External attackers — a student would

need to own only the single least secure
faculty member on campus — huge
attack surface

Least Privilege (2)

SIST - Yuan Xiao 9

Least Privilege requires dividing a system

into parts to which we can limit access

Known as Privilege Separation

Segmenting a system into components with

the least privilege needed can prevent an

attacker from taking over the entire system

Privilege Separation

SIST - Yuan Xiao 10

Thisdoesn’twork

unless…

SIST - Yuan Xiao 11

All accesses to objects be checked to

ensure that they are allowed

Generally means that there should be

a single method of access that’s well

hardened

Ideally check immediately before

access is granted

Complete Mediation

SIST - Yuan Xiao 12

What happens in an error condition?

What do you do if the power goes out?

Fail closed: No one can get in if the

power is out

Fail open: Anyone can get in if the

power goes out

Fail Closed

SIST - Yuan Xiao 13

Howdowemodelandtalk

aboutaccesspolicies?

SIST - Yuan Xiao 14

Least privilege and privilege separation apply to more than just users!

- UNIX: A User should only be able to read their own files

- UNIX: A Process should not be able to read another process’s memory

- Mobile: An App should not able to edit another app’s data

- Web: A Domain should only be able to read its own cookies

- Networking: Only a trusted Host should be able to access file server

Least Privilege: Users Subjects should only have access to access

the data and resources needed to perform routine, authorized tasks

Security Subjects

SIST - Yuan Xiao 15

Subject (Who?): acting system principals (e.g., user, app, process)

Object (What?): protected resources (e.g., memory, files, HW devices)

Operation (How?): how subjects operate on objects (e.g., read, delete)

Example Security Policies:

- UNIX: A User should not be able to delete other users’ files

- UNIX: A Process should not be able to read another process’s memory

- Mobile: An App should only be able to edit its own data

- Web: A Domain should not be able to read another domain’s cookies

Security Policies

SIST - Yuan Xiao 16

PART TWO

UNIX Security Model

SIST - Yuan Xiao 17

Subjects(Who?)

- Users, processes

UNIX Security Model

SIST - Yuan Xiao 18

AccessOperations(How?)

- Read, Write, Execute

Objects(What?)

- Files, directories

- Files: sockets, pipes, hardware devices, kernel objects, process

data

UNIX systems have many accounts

- Service accounts

- Used to run background processes (e.g., web server)

- User accounts

- Typically tied to a specific human

Every user has a unique integer ID — User ID — UID

UID 0 is reserved for special user root that has access to everything

- Many system operations can only run as root

Users

SIST - Yuan Xiao 19

You can view the users on your system by looking at /etc/passwd:

root:x:0:0:root:/root:/bin/bash

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

systemd-resolve:x:101:103:,,,:/run/systemd/resolve:/usr/sbin/nologin

yuan:x:1001:1001:Yuan Xiao,,,:/home/littlefish:/bin/bash

oldwang:x:1009:1009:Chundong Wang,,,:/home/oldwang:/usr/sbin/nologin

Example Users

SIST - Yuan Xiao 20

UNIX has also groups — collections of users who can share files and

other system resources

Every group has a group ID (GID) and name

Groups

SIST - Yuan Xiao 21

All Linux resources — sockets, devices, files — are managed as files

All files and directories have a single user owner and group owner

yuan@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 yuan cs253-tas 4096 Apr 2 15:56 homework

d rwx rwx --- 5 yuan cs253-instr 4096 Apr 2 15:56 grades

d rwx rwx r-x 11 yuan cs253-tas 4096 Dec 28 21:09 lectures

- rwx r-x r-- 1 yuan oldwang 0 Apr 11 04:15 test.py

UserOwner GroupOwner

File Ownership

SIST - Yuan Xiao 22

Three subjects have access to a file: user owner, group owner, other

Subjects can have three operations: read, write, execute

Owner can change permissions and group. Root can change user ownership.

yuan@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 yuan cs253-tas 4096 Apr 2 15:56 homework

d rwx rwx --- 5 yuan cs253-instr 4096 Apr 2 15:56 grades

d rwx rwx r-x 11 yuan cs253-tas 4096 Dec 28 21:09 lectures

- rwx r-x r-- 1 yuan oldwang Apr 11 04:15 test.py

Group

User Other

User Group

SIST - Yuan Xiao 23

File Ownership

yuan@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 yuan cs253-tas 4096 Apr 2 15:56 homework

d rwx rwx --- 5 yuan cs253-instr 4096 Apr 2 15:56 grades

d rwx rwx r-x 11 yuan cs253-tas 4096 Dec 28 21:09 lectures

- rwx r-x r-- 1 yuan oldwang0 Apr 11 04:15 test.py

Group

User Other

User Group

Q: What can yiting (member of cs253-tas) do to homework?

SIST - Yuan Xiao 24

File Ownership

yuan@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 yuan cs253-tas 4096 Apr 2 15:56 homework

d rwx rwx --- 5 yuan cs253-instr 4096 Apr 2 15:56 grades

d rwx rwx r-x 11 yuan cs253-tas 4096 Dec 28 21:09 lectures

- rwx r-x r-- 1 yuan oldwang0 Apr 11 04:15 test.py

Group

User Other

User Group

Q: If a student has access to this server,

which files can they access?

SIST - Yuan Xiao 25

File Ownership

UNIX’s permission model is a simple implementation of a generic access

control strategy known as Access Control Lists (ACLs)

Every object has an ACL that identifies what

operations subjects can perform. yuan

hw/

read/write

Each access to an object is checked against oldwang read/write

the object’s ACL.
yiting read

Access Control Lists (ACLs)

SIST - Yuan Xiao 26

PART THREE

UNIX Processes

SIST - Yuan Xiao 28

Processes are isolated

• Processes cannot access each other’s memory

Every process runs as a specific user on the system

• When you run a process, it runs with your UID’s permissions

• Process can access any files that the UID has access to

• Processes run by the same UID have the same permissions

Processes started by root can can reduce their privileges by changing

their UID to a less privileged UID

Processes

SIST - Yuan Xiao 29

yuan@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 yuan cs155-tas 4096 Apr 2 15:56 homework

d rwx rwx --- 5 yuan cs155-instr 4096 Apr 2 15:56 grades

When you run a command, it runs with all of your privileges because your

shell runs as your user account and forks to start the command

When any process forks, it inherits its parent's UID

Process Example

SIST - Yuan Xiao 30

Typically same value

Real User ID (RUID)

Saved User ID (SUID)

Every process has three different User IDs:

Effective User ID (EUID)

- Determines the permissions for process

- Determines the user that started the process

- EUID prior to change

Process User IDs

SIST - Yuan Xiao 31

(User who started process)

root can change EUID/RUID/SUID to arbitrary values

Unprivileged users can change EUID to only RUID or SUID

setuid(x):

Effective User ID (EUID) => x

Real User ID (RUID) => x

Saved User ID (SUID) => x

Changing User IDs

SIST - Yuan Xiao 32

Apache Web Server must start as root because only root can create

a socket that listens on port 80 (a privileged port)

Without any privilege reduction, any Apache bug would result in the

attacker having unrestricted server access

Instead, Apache creates children using the following scheme:

if (fork() == 0) {

int sock = socket(“:80”);

setuid(getuid(“www-data”));

}

Reducing Privilege through setuid

SIST - Yuan Xiao 33

Remember: unprivileged users can change EUID back to the RUID or SUID

setuid(x):

Effective UID => x

Real UID => x

Saved UID => x

seteuid(x):

Effective UID => x

Real UID (no change)

Saved UID (no change)

EUID = RUID =SUID = 0

seteuid(100);

EUID=100; RUID/SUID=0;

<perform dangerous operation>

setuid(0)

EUID = RUID = SUID = 0

Temporarily Changing UID

SIST - Yuan Xiao 34

Suppose SSH runs as root and runs the following code:

if (authenticate(uid, pwd) == S_SUCCESS) {

if (fork() == 0) {

seteuid(uid);

exec(“/bin/bash”);

}

}

SSH Example

SIST - Yuan Xiao 35

Suppose SSH runs as root and runs the following code:

if (authenticate(uid, pwd) == S_SUCCESS) {

if (fork() == 0) {

seteuid(uid); EUID := uid, RUID and SUID unchanged

exec(“/bin/bash”);

Attack: user can call setuid(0)

to become root because SUID == 0

}

}

SSH Example — Vulnerable

SIST - Yuan Xiao 36

Suppose SSH runs as root and runs the following code:

if (authenticate(uid, pwd) == S_SUCCESS) {

if (fork() == 0) {

seteuid(uid);

setuid(uid);

exec(“/bin/bash”);

}

EUID := uid, RUID := uid, SUID := uid

User cannot change UID

}

SSH Example — Correct Syscall

SIST - Yuan Xiao 37

The passwd utility allows you to change your password by updating

password /etc/shadow — a file that only root can read/write

Normally, this would not be possible. Remember: executables run with

the privilege of the executing user — and your account can’t access

UNIX allows you to set EUID of an executable to be the file owner

rather than the executing user.

SETUID Bit — Elevating Privileges

SIST - Yuan Xiao 39

setuid

Q: How does passwd know which user it should

allow the caller change the password for?

SETUID on passwd

SIST - Yuan Xiao 40

setuid syscall (in code):

Allows caller to change

User IDs of the process

setuid(x):

Effective UID => x

Real UID => x

Saved UID => x

setuid bit on Executable

Execution runs as owner

and group of executable

rather than the calling user

SIST - Yuan Xiao 41

setuid vs. setuid ()

System configuration files are owned by root

Important system processes run as root

Sometimes, you as a user, need to "become" root to fix problems

sudo: run a single command as root (requires you to be blessed)

su: allows you to become root by knowing its password

sudo su: become root without their password

Becoming Root User

SIST - Yuan Xiao 42

PART FOUR

Windows Security Model

SIST - Yuan Xiao 46

Windows has complex access

control options

Objects have full ACLs — possibility

for fine grained permissions

Users can be member of multiple

groups, groups can be nested

ACLs support Allow and Deny rules

Flexible ACLs

SIST - Yuan Xiao 47

Every object has a security descriptor

- Specifies who can perform what and audit rules

Contains

- Security identifiers (SIDs) for the owner and primary group of an object.

- Discretionary ACL (DACL): access rights allowed users or groups.

- System ACL (SACL): types of attempts that generate audit records

Object Security Desriptors

SIST - Yuan Xiao 48

Every process has a set of tokens — its “security context”

- ID of user account

- ID of groups

- ID of login session

- List of OS privileges held by user/groups

- List of restrictions

Impersonation token can be used temporarily to adopt a different context

Tokens

SIST - Yuan Xiao 49

When a process wants to access an

object, it presents its set of security

tokens (security context)

Windows checks whether the security

context has access to the object based

on the object’s security descriptor

Access token

Security
descriptor

Group1: Administrators
User: Mark

Group2: Poets

Control flags

Group SID
DACL Pointer
SACL Pointer

Deny
Poets
Read, Write
Allow
Mark

Revision Number

Owner SID

Read, Write

Access Request

SIST - Yuan Xiao 50

Capabilities: subject presents an unforgeable ticket

that grants access to an object. System doesn’t

care who subject is, just that they have access

ACL: system checks where subject is on list of

users with access to the object

Capabilities vs. ACLs

SIST - Yuan Xiao 51

Relying on user permission provides user with little protection against

malicious applications

Malicious application running as you has access to all of your files

Adobe Acrobat can edit, delete, and encrypt/ransom all of your data

Weak Protection on Desktops

SIST - Yuan Xiao 52

Mac OS now sandboxes many applications and mediates access to:

- Hardware (Camera, Microphone, USB, Printer)

- Network Connections (Inbound or Outbound)

- App Data (Calendar, Location, Contacts)

- User Files (Downloads, Pictures, Music, Movies, User Selected Files)

Access to any resource not explicitly requested in the project definition is

rejected by the system at run time.

Mac OS App Sandbox

SIST - Yuan Xiao 53

Android uses Linux and its own kernel application sandbox for isolation

Each application runs with its own UID in its own VM

- Apps cannot interact with one another

- Limit access to system resources (decided at installation time)

Reference monitor checks permissions on intercomponent communication

Android Process Isolation

SIST - Yuan Xiao 54

PART FIVE

Chrome Security Architecture

SIST - Yuan Xiao 55

Pre 2006 Modern

Modern Chrome Architecture

SIST - Yuan Xiao 56

Browser Process

Controls "chrome" part of the application

like address bar and, bookmarks. Also

handles the invisible, privileged parts of a

web browser like network requests.

Renderer Process

Controls anything inside of the tab where

a website is displayed.

Plugin Process

Controls any plugins used by the website, for example, flash.

GPU Process

Handles GPU tasks in isolation from other processes. It is separated into different process

because GPUs handles requests from multiple apps and draw them in the same surface

Chrome Processes

SIST - Yuan Xiao 57

Process-Based Site Isolation

SIST - Yuan Xiao 58

Broker (Main Browser)

Privileged controller/supervisor of the

activities of the sandboxed processes

Renderer's only access to the network is via

its parent browser process and file system

access can be restricted

Chrome Architecture

SIST - Yuan Xiao 59

✓ Defense in depth

✓ Principle of least privilege

✓ Privilege separation

✓Open design

✓ Keep it simple

Principles of Secure Systems

SIST - Yuan Xiao 62

“The security of a mechanism should not depend on the

secrecy of its design or implementation.”

If the details of the mechanism leaks (through reverse

engineering, dumpster diving or social engineering), then it is

a catastrophic failure for all the users at once.

If the secrets are abstracted from the mechanism, e.g., inside

a key, then leakage of a key only affects one user.

Open Design

SIST - Yuan Xiao 63

“a crypto system should be secure even if everything about

the system, except the key, is public knowledge.”

- Auguste Kerckhoff

Kerckhoff’s Principle

SIST - Yuan Xiao 64

✓ Defense in depth

✓ Principle of least privilege

✓ Privilege separation

✓ Open design

✓ Keep it simple

Principles of Secure Systems

SIST - Yuan Xiao 65

	幻灯片 1
	幻灯片 2: Vulnerabilities are Inevitable
	幻灯片 3: Even Safe Languages have Bugs!
	幻灯片 4
	幻灯片 5: Threat Modeling
	幻灯片 6
	幻灯片 7: Defense in Depth
	幻灯片 8: Least Privilege
	幻灯片 9: Least Privilege (2)
	幻灯片 10: Privilege Separation
	幻灯片 11
	幻灯片 12: Complete Mediation
	幻灯片 13: Fail Closed
	幻灯片 14
	幻灯片 15: Security Subjects
	幻灯片 16: Security Policies
	幻灯片 17
	幻灯片 18: UNIX Security Model
	幻灯片 19: Users
	幻灯片 20: Example Users
	幻灯片 21: Groups
	幻灯片 22: File Ownership
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26: Access Control Lists (ACLs)
	幻灯片 28
	幻灯片 29: Processes
	幻灯片 30: Process Example
	幻灯片 31: Process User IDs
	幻灯片 32: Changing User IDs
	幻灯片 33: Reducing Privilege through setuid
	幻灯片 34: Temporarily Changing UID
	幻灯片 35: SSH Example
	幻灯片 36: SSH Example — Vulnerable
	幻灯片 37: SSH Example — Correct Syscall
	幻灯片 39: SETUID Bit — Elevating Privileges
	幻灯片 40: SETUID on passwd
	幻灯片 41: setuid vs. setuid ()
	幻灯片 42: Becoming Root User
	幻灯片 46
	幻灯片 47: Flexible ACLs
	幻灯片 48: Object Security Desriptors
	幻灯片 49: Tokens
	幻灯片 50: Access Request
	幻灯片 51: Capabilities vs. ACLs
	幻灯片 52: Weak Protection on Desktops
	幻灯片 53: Mac OS App Sandbox
	幻灯片 54: Android Process Isolation
	幻灯片 55
	幻灯片 56: Modern Chrome Architecture
	幻灯片 57: Chrome Processes
	幻灯片 58: Process-Based Site Isolation
	幻灯片 59: Chrome Architecture
	幻灯片 62: Principles of Secure Systems
	幻灯片 63: Open Design
	幻灯片 64: Kerckhoff’s Principle
	幻灯片 65: Principles of Secure Systems

