
CS 253 Cyber Security
The confinement principle

ShanghaiTech University

1SIST - Yuan Xiao

Admin

• Project 1 ddl: 10/8 23:59

SIST - Yuan Xiao 2

PART ONE0 1
Confinement

SIST - Yuan Xiao 3

Running untrusted code

We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites:

• mobile apps, Javascript, browser extensions

– exposed applications: browser, pdf viewer, outlook

– legacy daemons: sendmail, bind

– honeypots

Goal: if application “misbehaves” ⇒ kill it
SIST - Yuan Xiao 4

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Hardware: run application on isolated hw (air gap)

air gap network 1Network 2

app 1 app 2

⇒ difficult to manageSIST - Yuan Xiao 5

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Virtual machines: isolate OS’s on a single machine

Virtual Machine Monitor (hypervisor)

OS1 OS2

app1 app2

Hardware
SIST - Yuan Xiao 6

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Process: System Call Interposition (containers)

 Isolate a process in a single operating system

Operating System

process 2

process 1

SIST - Yuan Xiao 7

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Threads: Software Fault Isolation (SFI)

• Isolating threads sharing same address space

– Application level confinement:
 e.g. browser sandbox for Javascript and WebAssembly

SIST - Yuan Xiao 8

Implementing confinement
Key component: reference monitor

– Mediates requests from applications

• Enforces confinement

• Implements a specified protection policy

– Must always be invoked:

• Every application request must be mediated

– Tamperproof:

• Reference monitor cannot be killed
 … or if killed, then monitored process is killed too

– Small enough to be analyzed and validated
SIST - Yuan Xiao 9

A old example: chroot

To use do: (must be root)

 chroot /tmp/guest root dir “/” is now “/tmp/guest”

 su guest EUID set to “guest”

Now “/tmp/guest” is added to every file system accesses:

 fopen(“/etc/passwd”, “r”) ⇒
 fopen(“/tmp/guest/etc/passwd” , “r”)

⇒ application (e.g., web server) cannot access files outside of jail

SIST - Yuan Xiao 10

Escaping from jails
Early escapes: relative paths

 fopen(“../../etc/passwd”, “r”) ⇒

 fopen(“/tmp/guest/../../etc/passwd”, “r”)

chroot should only be executable by root.

– otherwise jailed app can do:

• create dummy file “/aaa/etc/passwd”
• run chroot “/aaa”
• run su root to become root

(bug in Ultrix 4.0)SIST - Yuan Xiao 12

Problems with chroot and jail
Coarse policies:

– All or nothing access to parts of file system

– Inappropriate for apps like a web browser

• Needs read access to files outside jail
 (e.g., for sending attachments in Gmail)

Does not prevent malicious apps from:

– Accessing network and messing with other machines

– Trying to crash host OS
SIST - Yuan Xiao 15

PART TWO0 2
System Cal l Interposit ion:

sanboxing a process
SIST - Yuan Xiao 16

System call interposition
Observation: to damage host system (e.g. persistent changes)
app must make system calls:

– To delete/overwrite files: unlink, open, write

– To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:

– Completely kernel space (e.g., Linux seccomp)

– Completely user space (e.g., program shepherding)

– Hybrid (e.g., Systrace) SIST - Yuan Xiao 17

Early implementation (Janus) [GWTB’96]

Linux ptrace: process tracing

 process calls: ptrace (… , pid_t pid , …)

 and wakes up when pid makes sys call.

Monitor kills application if request is disallowed

OS Kernel

monitored
application
(browser)

monitor

user space

fopen(“/etc/passwd”, “r”)

SIST - Yuan Xiao 18

Example policy
Sample policy file (e.g., for PDF reader)

 path allow /tmp/*

 path deny /etc/passwd

 network deny all

Manually specifying policy for an app can be difficult:

– Recommended default policies are available

 … can be made more restrictive as needed.
SIST - Yuan Xiao 19

Complications
• If app forks, monitor must also fork

– forked monitor monitors forked app

• If monitor crashes, app must be killed

• Monitor must maintain all OS state associated with app

– current-working-dir (CWD), UID, EUID, GID

– When app does “cd path” monitor must update its CWD
• otherwise: relative path requests interpreted incorrectly

cd(“/tmp”)
open(“passwd”, “r”)

cd(“/etc”)
open(“passwd”, “r”)

SIST - Yuan Xiao 20

Problems with ptrace
Ptrace is not well suited for this application:

– Trace all system calls or none
inefficient: no need to trace “close” system call

– Monitor cannot abort sys-call without killing app

Security problems: race conditions
– Example: symlink: me ⟶ mydata.dat

 proc 1: open(“me”)
 monitor checks and authorizes
 proc 2: me ⟶ /etc/passwd
 OS executes open(“me”)

Classic TOCTOU bug: time-of-check / time-of-use

ti
m

e

not atomic

SIST - Yuan Xiao 21

SCI in Linux: seccomp-bpf
Seccomp-BPF: Linux kernel facility used to filter process sys calls

• Sys-call filter written in the BPF language (use BPFC compiler)

• Used in Chromium, Docker containers, …

OS Kernel

Chrome renderer
process starts

Renderer process
renders site

user space

seccomp-bpf

due to exploit:
fopen(“/etc/passwd”, “r”)

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,

 &bpf_policy)

…

run BPF program … kill process

SIST - Yuan Xiao 22

BPF filters (policy programs)
Process can install multiple BPF filters:

– once installed, filter cannot be removed (all run on every syscall)

– if program forks, child inherits all filters

– if program calls execve, all filters are preserved

BPF filter input: syscall number, syscall args., arch. (x86 or ARM)

Filter returns one of:

– SECCOMP_RET_KILL: kill process

– SECCOMP_RET_ERRNO: return specified error to caller

– SECCOMP_RET_ALLOW: allow syscall
SIST - Yuan Xiao 23

Installing a BPF filter

int main (int argc , char **argv) {

 prctl(PR_SET_NO_NEW_PRIVS , 1);

 prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf_policy)

 fopen(“file.txt", “w”);

 printf(“… will not be printed. \n”);

}

• Must be called before setting BPF filter.
• Ensures set-UID, set-GID ignored on subequent execve()

 ⇒ attacker cannot elevate privilege

Kill if call open() for write

SIST - Yuan Xiao 24

Docker: isolating containers using seccomp-bpf

Container: process level isolation

• Container prevented from
making sys calls filtered by
secomp-BPF

• Whoever starts container
can specify BPF policy
– default policy blocks many syscalls, including ptrace

hardware
host OS

Docker engine
A

p
p

 1

A
p

p
 2

A
p

p
 3

containers

SIST - Yuan Xiao 25

Docker sys call filtering
Run nginx container with a specific filter called filter.json:

 $ docker run --security-opt=“seccomp=filter.json” nginx

Example filter:

 “defaultAction”: “SCMP_ACT_ERRNO”, // deny by default

 “syscalls”: [

 { "names": ["accept”], // sys-call name
 "action": "SCMP_ACT_ALLOW", // allow (whitelist)
 "args": [] } , // what args to allow
 …
]

SIST - Yuan Xiao 26

More Docker confinement flags

Specify as an unprivileged user:
 $ docker run --user www nginx

Limit Linux capabilities:
 $ docker run --cap-drop all --cap-add NET_BIND_SERVICE nginx

Prevent process from becoming privileged (e.g., by a setuid binary)

 $ docker run --security-opt=no-new-privileges:true nginx

Limit number of restarts and resources (# open files, # processes):

 $ docker run --restart=on-failure:<max-retries>

 --ulimit nofile=<max-fd> --ulimit nproc=<max-proc> nginx

allow to bind to
privileged ports

drop all
capabilities

SIST - Yuan Xiao 27

PART THREE0 3
Confinement Via Virtual Machines

SIST - Yuan Xiao 29

Virtual Machines

Virtual Machine Monitor (VMM, hypervisor)

Guest OS 2

Apps

Guest OS 1

Apps

Hardware

Host OS

VM2 VM1

single HW platform with isolated components
SIST - Yuan Xiao 30

Why so popular?
VMs in the 1960’s:

– Few computers, lots of users

– VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:

– Too many computers, too few users

• Print server, Mail server, Web server, File server, Database , …

– VMs heavily used in private and public clouds
SIST - Yuan Xiao 31

Hypervisor security assumption

Hypervisor Security assumption:

– Malware can infect guest OS and guest apps

– But malware cannot escape from the infected VM

• Cannot infect host OS

• Cannot infect other VMs on the same hardware

Requires that hypervisor protect itself and is not buggy

• (some) hypervisors are much simpler than a full OS
SIST - Yuan Xiao 32

Problem: covert channels
Covert channel: unintended communication channel between
isolated components

– Can leak classified data from secure component
to public component

Classified VM Public VM

secret
doc

m
alw

are

listener
covert

channel

hypervisor
SIST - Yuan Xiao 33

An example covert channel
Both VMs use the same underlying hardware

To send a bit b ∈ {0,1} malware does:

– b= 1: at 1:00am do CPU intensive calculation

– b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time

 b = 1 ⇒ completion-time > threshold

Many covert channels exist in running system:

– File lock status, cache contents, interrupts, …

– Difficult to eliminate all
SIST - Yuan Xiao 34

VM isolation in practice: cloud

Guest OS Guest OS

Hardware

Xen hypervisor

VM instance

customer 1

VM instance

customer 2

VMs from different customers may run on the same machine
• Hypervisor must isolate VMs … but some info leaks

Type 1 hypervisor:
no host OS

SIST - Yuan Xiao 35

VM isolation in practice: end-user
Qubes OS: a desktop/laptop OS where everything is a VM

• Runs on top of the Xen hypervisor

• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor

Debian OS

Personal VM

Windows OS

Work VM

Debian OS

Disposable VM

sketchy PDF:

SIST - Yuan Xiao 36

Debian OS

Personal VM

Debian OS

Whonix VM

Force all traffic through Tor

VM isolation in practice: end-user
Qubes OS: a desktop/laptop OS where everything is a VM

• Runs on top of the Xen hypervisor

• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor

Windows OS

Work VM

Debian OS

Vault VM

Pwd/U2F Manager

SIST - Yuan Xiao 37

Every window frame identifies VM source

GUI VM ensures frames are drawn correctly
SIST - Yuan Xiao 38

THE END

SIST - Yuan Xiao 58

	幻灯片 1
	幻灯片 2: Admin
	幻灯片 3
	幻灯片 4: Running untrusted code
	幻灯片 5: Approach: confinement
	幻灯片 6: Approach: confinement
	幻灯片 7: Approach: confinement
	幻灯片 8: Approach: confinement
	幻灯片 9: Implementing confinement
	幻灯片 10: A old example: chroot
	幻灯片 12: Escaping from jails
	幻灯片 15: Problems with chroot and jail
	幻灯片 16
	幻灯片 17: System call interposition
	幻灯片 18: Early implementation (Janus) [GWTB’96]
	幻灯片 19: Example policy
	幻灯片 20: Complications
	幻灯片 21: Problems with ptrace
	幻灯片 22: SCI in Linux: seccomp-bpf
	幻灯片 23: BPF filters (policy programs)
	幻灯片 24: Installing a BPF filter
	幻灯片 25: Docker: isolating containers using seccomp-bpf
	幻灯片 26: Docker sys call filtering
	幻灯片 27: More Docker confinement flags
	幻灯片 29
	幻灯片 30: Virtual Machines
	幻灯片 31: Why so popular?
	幻灯片 32: Hypervisor security assumption
	幻灯片 33: Problem: covert channels
	幻灯片 34: An example covert channel
	幻灯片 35: VM isolation in practice: cloud
	幻灯片 36: VM isolation in practice: end-user
	幻灯片 37: VM isolation in practice: end-user
	幻灯片 38: Every window frame identifies VM source
	幻灯片 58: THE END

