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• Last week we stopped at Acoustic Side-Channel as an example…

• Now, what indeed are Side-Channel Attacks?

– Attacks based on information that can be gleaned from the 
physical implementation of a system, rather than breaking its 
theoretical properties 

SIST - Yuan Xiao 2



PART ONE0 1
Class ical  S ide -channel  Attacks
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Side-channels and Crypto

• Side-channels were initially most commonly discussed in the 
context of cryptosystems 

• Timing attacks

• Power analysis 

• Old but good overview: 
http://www.nicolascourtois.com/papers/sc/sidech_attacks.pdf 

• If you do something different for secret key bits 1 vs. 0, attacker can 
learn something... 
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http://www.nicolascourtois.com/papers/sc/sidech_attacks.pdf


Timing Side-Channel Attacks

• Famous example: RSA

• RSA needs to do perform 
key-based modular 
exponentiations 

• Naïve implementations 
may look like this…
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BigInt modexp(BigInt a, BigInt e, BigInt n) {
    BigInt result = 1;
    for (int i = bitlen(e) - 1; i >= 0; i--) {
        // always do square
        result = (result * result) % n;
        
        if (bit_test(e, i)) {
            // only multiply when the bit is 1
            result = (result * a) % n;
        }
    }
    return result;
}

* Intel’s Secure Coding Guide cites this example as a textbook illustration of timing leakage in RSA implementations.



Timing Side-Channel Attacks

• If we have a e={1,0,1,1,0,1}, 
total time will be:
6*T1 + 4*T2

• If we have a e={0,0,0,0,0,0}, 
total time will be:
 6*T1 + 0*T2

• By measuring time, we know 
the how many 1s in e. SIST - Yuan Xiao 6

BigInt modexp(BigInt a, BigInt e, BigInt n) {
    BigInt result = 1;
    for (int i = bitlen(e) - 1; i >= 0; i--) {
        // always do square
        result = (result * result) % n;
        
        if (bit_test(e, i)) {
            // only multiply when the bit is 1
            result = (result * a) % n;
        }
    }
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}
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Power Side-Channel Attacks 
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PART TWO0 2
Cache Side-Channel  Attacks
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Quick Recap: Memory and Cache 

• Main memory is large 
and slow 

• Processors have faster, 
smaller caches to store 
more recently used 
memory closer to cores 

• Caches organized in 
hierarchy: closer to the 
core are faster and 
smaller 
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Cache timing side channel attacks

• Caches are a shared system resource

• Not isolated by process, VM, or privilege level

• An attacker who can run code on same physical hardware can 
abuse this shared resource to learn information from another 
process or VM



Cache timing attack threat model

• Attacker and victim are isolated (separate processes) on same 
physical system

• Attacker is able to invoke (directly or indirectly) functionality 
exposed by victim

• Examples?

• Attacker does not have direct access to contents of victim memory

• Attacker will use shared cache access to infer information about 
victim memory contents



Cache timing attack vector

• Many algorithms have memory access patterns that are 
dependent on sensitive memory contents

– Examples?

• If attacker can observe access patterns they can learn secrets



Cache timing attack options
• Prime: Place a known address in the cache by reading it

• Evict: Access memory until address is no longer cached (force 
capacity misses)

• Flush: Remove an address from the cache (clflush on x86)

• Mesaure: Precisely (down to the cycle) how long it takes to do 
something (rdtsc on x86)

• Attack form: Manipulate cache into known state, make victim run, 
infer what changed after run



Three basic techniques

• Evict and time

– Evict things from the cache and measure if victim slows down as 
a result

• Prime and probe

– Place things in the cache, run the victim, and see if you slow 
down as result

• Flush and reload

– Flush a particular line from the cache, run the victim, and see if 
your accesses are still fast



PART THREE0 3
Spectre  Attack

SIST - Yuan Xiao 29



Performance drives CPU purchases

Clock speed maxed out:

– Pentium 4 reached 3.8 GHz in 2004

– Memory latency is slow and not improving much

To gain performance, need to do more per cycle!

– Reduce memory delays ⟶  caches

– Work during delays  ⟶  speculative execution
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Speculative execution

if  (uncached_value == 1)     // load from memory
       a = compute(b)

CPUs can guess likely program path and do speculative execution
 Example:

 Branch predictor guesses if() is ‘true’  (based on prior history)

 Starts executing compute(b) speculatively

 When value arrives from memory, check if guess was correct:

 Correct:      Save speculative work  ⇒  performance gain

 Incorrect:   Discard speculative work  ⇒  no harm ????
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Speculative Execution

CPU regularly performs incorrect 
calculations, then deletes mistakes

Architectural Guarantee

Register values eventually match 
result of in-order execution

Is making + discarding mistakes the same as in-order execution?

The processor executed instructions that were not supposed to run !!

The problem:  instructions can have observable side-effects
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Conditional branch (Variant 1) attack

if (x < array1_size)

   y = array2[ array1[x]*4096 ];

Suppose   unsigned  int x   comes from untrusted caller

Execution without speculation is safe:

array2[array1[x]*4096] not eval unless   x < array1_size

What about with speculative execution?
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Conditional branch (Variant 1) attack

Before attack:

• Train branch predictor to expect if() is true
(e.g. call with x < array1_size)

• Evict  array1_size and 
 array2[] from cache

if (x < array1_size)

   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096]

array2[ 6*4096]

array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status
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Conditional branch (Variant 1) attack

if (x < array1_size)

   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096]

array2[ 6*4096]

array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

Attacker calls victim with x=1000

Speculative exec while waiting for array1_size:

 Predict that if() is true

 Read address (array1 base + x)  
  (using out-of-bounds x=1000) 

 Read returns secret byte = 09  
  (in cache ⇒  fast )
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Conditional branch (Variant 1) attack

if (x < array1_size)

   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096]

array2[ 6*4096]

array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

Attacker calls victim with x=1000

Next:

 Request mem at  (array2 base + 09*4096)

 Brings array2[09*4096] into the cache

 Realize if() is false:  discard speculative work

proceed to next instruction
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Conditional branch (Variant 1) attack

if (x < array1_size)

   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096]

array2[ 6*4096]

array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

Attacker calls victim with x=1000

Attacker:   (another process or core)

• for i=0 to 255:  

   measure read time for array2[i*4096]

• When i=09  read is fast (cached), 
reveals secret byte !!

• Repeat with x=1001,1002,…   (10KB/s)
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Violating JavaScript’s sandbox

index will be in-bounds on training passes,
and out-of-bounds on attack passes

JIT thinks this check ensures index < length, so it omits bounds 
check in next line.  Separate code evicts length for attack passes

Do the out-of-bounds read on attack passes!

Keeps the JIT from adding unwanted 
bounds checks on the next line

Leak out-of-bounds read result into cache state!

Need to use the result so the 
operations aren’t optimized away

“|0” is a JS optimizer trick 
(makes result an integer)

if (index < simpleByteArray.length) {

  index = simpleByteArray[index | 0];

  index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;

  localJunk ^= probeTable[index|0]|0;

}
4096 bytes = memory page size

• Browsers run JavaScript from untrusted websites

– JIT compiler inserts safety checks, including bounds checks on array accesses

• Speculative execution runs through safety checks… 

Can evict length and probeTable from JavaScript (easy)

    … then use timing to detect newly-cached location in probeTableSIST - Yuan Xiao 39



... but there is more
More speculative execution attacks:

• Meltdown

• Rogue inflight data load (RIDL) and Fallout

• ZombieLoad

• Micro-op caches (June 2020)

• Pointer prefetching in Apple’s M1  (March 2024)

Enable reading unauthorized memory  (client, cloud, TDX)

• Mitigating incurs significant performance costs
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How to evaluate a processor?

Processors are measured by their performance on benchmarks:

• Processor vendors add many architectural features 
to speed-up benchmarks

• Until recently:  security implications were secondary

 ⇒    lots of security issues found in last few years

     … likely more will be found in coming years

SIST - Yuan Xiao 46



THE  END
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