
CS 253 Cyber Security
Microarchitectural Security

ShanghaiTech University

1SIST - Yuan Xiao

2

• Last week we stopped at Acoustic Side-Channel as an example…

• Now, what indeed are Side-Channel Attacks?

– Attacks based on information that can be gleaned from the
physical implementation of a system, rather than breaking its
theoretical properties

SIST - Yuan Xiao 2

PART ONE0 1
Class ical S ide -channel Attacks

SIST - Yuan Xiao 3

Side-channels and Crypto

• Side-channels were initially most commonly discussed in the
context of cryptosystems

• Timing attacks

• Power analysis

• Old but good overview:
http://www.nicolascourtois.com/papers/sc/sidech_attacks.pdf

• If you do something different for secret key bits 1 vs. 0, attacker can
learn something...

SIST - Yuan Xiao 4

http://www.nicolascourtois.com/papers/sc/sidech_attacks.pdf

Timing Side-Channel Attacks

• Famous example: RSA

• RSA needs to do perform
key-based modular
exponentiations

• Naïve implementations
may look like this…

SIST - Yuan Xiao 5

BigInt modexp(BigInt a, BigInt e, BigInt n) {
 BigInt result = 1;
 for (int i = bitlen(e) - 1; i >= 0; i--) {
 // always do square
 result = (result * result) % n;

 if (bit_test(e, i)) {
 // only multiply when the bit is 1
 result = (result * a) % n;
 }
 }
 return result;
}

* Intel’s Secure Coding Guide cites this example as a textbook illustration of timing leakage in RSA implementations.

Timing Side-Channel Attacks

• If we have a e={1,0,1,1,0,1},
total time will be:
6*T1 + 4*T2

• If we have a e={0,0,0,0,0,0},
total time will be:
 6*T1 + 0*T2

• By measuring time, we know
the how many 1s in e. SIST - Yuan Xiao 6

BigInt modexp(BigInt a, BigInt e, BigInt n) {
 BigInt result = 1;
 for (int i = bitlen(e) - 1; i >= 0; i--) {
 // always do square
 result = (result * result) % n;

 if (bit_test(e, i)) {
 // only multiply when the bit is 1
 result = (result * a) % n;
 }
 }
 return result;
}

T1

T2

Power Side-Channel Attacks

SIST - Yuan Xiao 7

PART TWO0 2
Cache Side-Channel Attacks

SIST - Yuan Xiao 8

Quick Recap: Memory and Cache

• Main memory is large
and slow

• Processors have faster,
smaller caches to store
more recently used
memory closer to cores

• Caches organized in
hierarchy: closer to the
core are faster and
smaller

SIST - Yuan Xiao 9

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Memory and Cache

Cache timing side channel attacks

• Caches are a shared system resource

• Not isolated by process, VM, or privilege level

• An attacker who can run code on same physical hardware can
abuse this shared resource to learn information from another
process or VM

Cache timing attack threat model

• Attacker and victim are isolated (separate processes) on same
physical system

• Attacker is able to invoke (directly or indirectly) functionality
exposed by victim

• Examples?

• Attacker does not have direct access to contents of victim memory

• Attacker will use shared cache access to infer information about
victim memory contents

Cache timing attack vector

• Many algorithms have memory access patterns that are
dependent on sensitive memory contents

– Examples?

• If attacker can observe access patterns they can learn secrets

Cache timing attack options
• Prime: Place a known address in the cache by reading it

• Evict: Access memory until address is no longer cached (force
capacity misses)

• Flush: Remove an address from the cache (clflush on x86)

• Mesaure: Precisely (down to the cycle) how long it takes to do
something (rdtsc on x86)

• Attack form: Manipulate cache into known state, make victim run,
infer what changed after run

Three basic techniques

• Evict and time

– Evict things from the cache and measure if victim slows down as
a result

• Prime and probe

– Place things in the cache, run the victim, and see if you slow
down as result

• Flush and reload

– Flush a particular line from the cache, run the victim, and see if
your accesses are still fast

PART THREE0 3
Spectre Attack

SIST - Yuan Xiao 29

Performance drives CPU purchases

Clock speed maxed out:

– Pentium 4 reached 3.8 GHz in 2004

– Memory latency is slow and not improving much

To gain performance, need to do more per cycle!

– Reduce memory delays ⟶ caches

– Work during delays ⟶ speculative execution

SIST - Yuan Xiao 30

Speculative execution

if (uncached_value == 1) // load from memory
 a = compute(b)

CPUs can guess likely program path and do speculative execution
 Example:

 Branch predictor guesses if() is ‘true’ (based on prior history)

 Starts executing compute(b) speculatively

 When value arrives from memory, check if guess was correct:

 Correct: Save speculative work ⇒ performance gain

 Incorrect: Discard speculative work ⇒ no harm ????
SIST - Yuan Xiao 32

Speculative Execution

CPU regularly performs incorrect
calculations, then deletes mistakes

Architectural Guarantee

Register values eventually match
result of in-order execution

Is making + discarding mistakes the same as in-order execution?

The processor executed instructions that were not supposed to run !!

The problem: instructions can have observable side-effects

SIST - Yuan Xiao 33

Conditional branch (Variant 1) attack

if (x < array1_size)

 y = array2[array1[x]*4096];

Suppose unsigned int x comes from untrusted caller

Execution without speculation is safe:

array2[array1[x]*4096] not eval unless x < array1_size

What about with speculative execution?
SIST - Yuan Xiao 34

Conditional branch (Variant 1) attack

Before attack:

• Train branch predictor to expect if() is true
(e.g. call with x < array1_size)

• Evict array1_size and
 array2[] from cache

if (x < array1_size)

 y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[0*4096]

array2[1*4096]

array2[2*4096]

array2[3*4096]

array2[4*4096]

array2[5*4096]

array2[6*4096]

array2[7*4096]

array2[8*4096]

array2[9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

SIST - Yuan Xiao 35

Conditional branch (Variant 1) attack

if (x < array1_size)

 y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[0*4096]

array2[1*4096]

array2[2*4096]

array2[3*4096]

array2[4*4096]

array2[5*4096]

array2[6*4096]

array2[7*4096]

array2[8*4096]

array2[9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

Attacker calls victim with x=1000

Speculative exec while waiting for array1_size:

 Predict that if() is true

 Read address (array1 base + x)
 (using out-of-bounds x=1000)

 Read returns secret byte = 09
 (in cache ⇒ fast)

SIST - Yuan Xiao 36

Conditional branch (Variant 1) attack

if (x < array1_size)

 y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[0*4096]

array2[1*4096]

array2[2*4096]

array2[3*4096]

array2[4*4096]

array2[5*4096]

array2[6*4096]

array2[7*4096]

array2[8*4096]

array2[9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

Attacker calls victim with x=1000

Next:

 Request mem at (array2 base + 09*4096)

 Brings array2[09*4096] into the cache

 Realize if() is false: discard speculative work

proceed to next instruction
SIST - Yuan Xiao 37

Conditional branch (Variant 1) attack

if (x < array1_size)

 y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[0*4096]

array2[1*4096]

array2[2*4096]

array2[3*4096]

array2[4*4096]

array2[5*4096]

array2[6*4096]

array2[7*4096]

array2[8*4096]

array2[9*4096]

array2[10*4096]

array2[11*4096]

Contents don’t matter

Uncached Cached

  

only care about cache status

Attacker calls victim with x=1000

Attacker: (another process or core)

• for i=0 to 255:

 measure read time for array2[i*4096]

• When i=09 read is fast (cached),
reveals secret byte !!

• Repeat with x=1001,1002,… (10KB/s)
SIST - Yuan Xiao 38

Violating JavaScript’s sandbox

index will be in-bounds on training passes,
and out-of-bounds on attack passes

JIT thinks this check ensures index < length, so it omits bounds
check in next line. Separate code evicts length for attack passes

Do the out-of-bounds read on attack passes!

Keeps the JIT from adding unwanted
bounds checks on the next line

Leak out-of-bounds read result into cache state!

Need to use the result so the
operations aren’t optimized away

“|0” is a JS optimizer trick
(makes result an integer)

if (index < simpleByteArray.length) {

 index = simpleByteArray[index | 0];

 index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;

 localJunk ^= probeTable[index|0]|0;

}
4096 bytes = memory page size

• Browsers run JavaScript from untrusted websites

– JIT compiler inserts safety checks, including bounds checks on array accesses

• Speculative execution runs through safety checks…

Can evict length and probeTable from JavaScript (easy)

 … then use timing to detect newly-cached location in probeTableSIST - Yuan Xiao 39

... but there is more
More speculative execution attacks:

• Meltdown

• Rogue inflight data load (RIDL) and Fallout

• ZombieLoad

• Micro-op caches (June 2020)

• Pointer prefetching in Apple’s M1 (March 2024)

Enable reading unauthorized memory (client, cloud, TDX)

• Mitigating incurs significant performance costs
SIST - Yuan Xiao 45

How to evaluate a processor?

Processors are measured by their performance on benchmarks:

• Processor vendors add many architectural features
to speed-up benchmarks

• Until recently: security implications were secondary

 ⇒ lots of security issues found in last few years

 … likely more will be found in coming years

SIST - Yuan Xiao 46

THE END

SIST - Yuan Xiao 47

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4: Side-channels and Crypto
	幻灯片 5: Timing Side-Channel Attacks
	幻灯片 6: Timing Side-Channel Attacks
	幻灯片 7: Power Side-Channel Attacks
	幻灯片 8
	幻灯片 9: Quick Recap: Memory and Cache
	幻灯片 10: Memory and Cache
	幻灯片 11: Memory and Cache
	幻灯片 12: Memory and Cache
	幻灯片 13: Memory and Cache
	幻灯片 14: Memory and Cache
	幻灯片 15: Memory and Cache
	幻灯片 16: Memory and Cache
	幻灯片 17: Memory and Cache
	幻灯片 18: Memory and Cache
	幻灯片 19: Memory and Cache
	幻灯片 20: Memory and Cache
	幻灯片 21: Memory and Cache
	幻灯片 22: Memory and Cache
	幻灯片 23: Memory and Cache
	幻灯片 24: Cache timing side channel attacks
	幻灯片 25: Cache timing attack threat model
	幻灯片 26: Cache timing attack vector
	幻灯片 27: Cache timing attack options
	幻灯片 28: Three basic techniques
	幻灯片 29
	幻灯片 30: Performance drives CPU purchases
	幻灯片 32: Speculative execution
	幻灯片 33
	幻灯片 34: Conditional branch (Variant 1) attack
	幻灯片 35: Conditional branch (Variant 1) attack
	幻灯片 36: Conditional branch (Variant 1) attack
	幻灯片 37: Conditional branch (Variant 1) attack
	幻灯片 38: Conditional branch (Variant 1) attack
	幻灯片 39: Violating JavaScript’s sandbox
	幻灯片 45: ... but there is more
	幻灯片 46: How to evaluate a processor?
	幻灯片 47: THE END

