R e s

CS 253 Cyber Security
Cryptography

—® ShanghaiTech University &—

SIST - Yuan Xiao 1

Cryptography

|s:
— A tremendous tool for protecting information
— The basis for many security mechanisms

Is not:
— The solution to all security problems
— Reliable unless implemented and used properly
— Something you should try to invent yourself

Goal 1: Secure communication

< C O

Personal Small Business

Checking Savings

Online ID

Passcode

- Save Online ID

Sign In
Forgot ID/Passcode?

Security & Help Enroll

@ Bank of America Corporation [US]
Wealth Management Businesses & Institutions

BANK OF AMERICA %7

https://www.bankofamerica.com

“Z About Us

Credit Cards Home Loans Auto Loans

Open a checking accoun

Bank of America Advantage Banking helps you s
tomorrow.

Get started

SIST - Yuan Xiao

(protecting data in motion)

no eavesdropping
no tampering

Transport Layer Security / TLS

Standard for Internet security

— Goal: “... provide privacy and reliability between two
communicating applications”

Two main parts

1. Handshake Protocol: Establish shared secret key
using public-key cryptography

2. Record Layer: Transmit data using negotiated key

Our starting point: Using a key for encryption and integrity

Goal 2: protected files

(protecting data at rest)

File system

Alice File 1 > Alice

No eavesdropping
No tampering

SIST - Yuan Xiao 5

Symmetric Cipher

SIST - Yuan Xiao

Building block: symmetric cipher

Alice j Bob

E, D: cipher k: secret key (e.g. 128 bits)
m, c: plaintext, ciphertext N: nonce (non-repeating)

Encryption algorithm is publicly known
= never use a proprietary cipher

SIST - Yuan Xiao 7

Use Cases

Single use key: (one time key)

* Key is only used to encrypt one message
e encrypted email: new key generated for every email
* No need for nonce (setto0)

Multi use key: (many time key)

* Key is used to encrypt multiple messages or multiple files
e TLS: same key used to encrypt many frames
* Use either a unique nonce or a random nonce

First example: One Time Pad (singe use key)

Vernam (1917)

Key:

Plaintext:

Ciphertext:

Encryption: c=E(k, m)=m & k

Decryption: Dk, c)=c® k =(m® k) Pk=m

SIST - Yuan Xiao

One Time Pad (OTP) Security

Shannon (1949):

— OTP is “secure” against one-time eavesdropping

— without key, ciphertext reveals no “information”
about plaintext

Problem: OTP key is as long as the message

St ream Cl p h ers (single use key)

Problem: OTP key is as long as the message
Solution: Pseudo random key -- stream ciphers

Ckey |
¢ < PRG(K) ® m
O message |
[cphertext____|]

Example: ChaCha20 (one-time.ifnononce) key: 128 or 256 bits.

Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

c, < m; ® PRG(k)
c, < m, @ PRG(k)

Eavesdropper does:

c,®c, — m; ® m,

What if want to use
same key to encrypt
two files?

Enough redundant information in English that:

Block ciphers: crypto work horse

n bits

n bits

PT Block

CT Block

Key Kk Bits

Canonical examples:

2. AES:

n=128 bits, k = 128, 192, 256 bits

SIST - Yuan Xiao

13

Block Ciphers Built by Iteration

key k

| | | |
m—>;j—>;v—>;»— ---------- —>;*c—>c
o (a'ss o o

R(k,m): round function

for AES128:10 rouS@ds, AES256: n=14 rounds

T - Yuan Xiao 14

AES-NI: AES in hardware (intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
 aesenc, aesenclast: one round of AES
aesenc xmml, xmm2 (result written to xmm1)

J \ J

Y Y
state round key

 aesdec, aesdeclast: one round of AES
* aeskeygenassist: do AES key expansion

— more than 10x speedup over a software AES
—> better security: all AES instructions are constant time

Incorrect use of block ciphers

Electronic Code Book (ECB):

PT: | | [] | [M,] | | — - =] [[|
CT: | | [C, | | [C, | | | = - = | [| |
Problem:

— if m;=m, then c,=c,

SIST - Yuan Xiao

17

In pictures

An example plaintext

Encrypted with AES in ECB
mode

e

AT

i

SIST - Yuan Xiao

18

CTR mode encryption (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

mo] m[1]

E(k,IV) E(k,IV+1) ... E(kIV+L) D
cl0] c[] clL]
ciphertext

Why is this secure for multiple messages? See the crypto course
SIST Yuan Xino (Prof. Zhang Liangfeng)

19

A Warning

eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.
CTR mode is insecure against active attacks!

Next: methods to ensure message integrity

SIST - Yuan Xiao 20

Message Integrity: MACs

 Goal: provide message integrity. No confidentiality.

— ex: Protecting public binaries on disk.

k

- message m tag

Generate tag: Verify tag: 2
tag < S(k, m) V(k, m, tag) = “yes’

SIST - Yuan Xiao

21

Construction: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.
example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

— Standardized method: HMAC
S(k, msg) = H(k®opad || H(k®ipad || msg))

Why is this MAC construction secure?

... see the crypto course (Prof. Zhang Liangfeng)

Combining MAC and ENC (Auth. Enc.)

Encryption key k. MAC key = k;

Option 1: (SSL) MAC(k;, m) enc ke
g — PR mm fMAC — ¢
Ogt;on 2: (IPsec, TLS 1.3) Enc k. MAC(k;, c)
AWAYS g m = L | = [A
correct
Option 3: (SSH) enc ke MAC(k;, m)
g -] - B e

SIST - Yuan Xiao 25

AEAD: Auth. Enc. with Assoc. Data

AEAD: encrypted

associated data

authenticated

AES-GCM: CTR mode encryption then MAC
(MAC accelerated via Intel’s PCLMULQDQ instruction)

SIST - Yuan Xiao 26

AES-GCM in One Figure

| Counter0 |—{(Tliner }—» Counter1 |—»("iner }— Counter2

Eg E g E
Y b

¥ r
Plaintext 1 9 Plaintext 2 3

r

v
Ciphertext 1 Ciphertext 2
It H

i

NP

h.
o]
N

Y

(o] (o} ()

’\
L/
y
e e} D

tw

) 4
- —(1)

3 !
>l c &

r

w1
AV

y

A
Auth Tag

SIST - Yuan Xiao

27

Example AES-GCM functions

int encrypt(

unsigned char *key, // key
unsigned char *iv, intiv_len, // nonce
unsigned char *plaintext, int plaintext_len, // plaintext
unsigned char *aad, int aad _len, // assoc. data
Jngg;ea cFa?*Ziphertext) // output ct

int decrypt(// error if invalid MAC on (aad, ciphertext)
unsigned char *key, // key

unsigned char *ciphertext, int ciphertext_len, // plaintext
unsigned char *aad, int aad _len, // assoc. data

unsigned char *plainrtext) // output pt

Summary

Shared secret key:

e Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]
e One-time key: ex: a stream cipher

e Many-time key: ex: AES-CTR with a unique/random nonce

4) N
Integrity: HMAC

\Authenticated encryption: encrypt-then-MAC using AES-GCM)

Encryption and Compression Problems

SIST - Yuan Xiao

31

Encryption and compression: oil and vinegar

HTTP: uses compression to reduce bandwidth

Option 1: first encrypt and then compress

* Does not work ... ciphertext looks like a random string

Option 2: first compress and then encrypt

e Used in many Internet protocols (TLs, HTTP, QuUIC, ...)
* Trouble ...

Tro u b I e see [Kelsey’02]

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl [] ‘
Cookie: uid=jhPL8g69684rksfsdg | |

- $
POST /bank.com/buy?id=goog ﬂ]\‘

Cookie: uid=jhPL8g69684rksfsdg

Second message compresses better than first:
network observer can distinguish the two messages!

SIST - Yuan Xiao 33

Even worse: the CRIME attack

o]~ -

Goal: steal user’s bank cookie

POST /bank.com/buy?id=aapl | [‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Javascript can issue requests to Bank,
but cannot read Cookie value

SIST - Yuan Xiao 34

Even worse: the CRIME attack

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=a) [‘

Cookie: uid=jhPL8g69684rksfsdg

Javascript

observe ciphertext size

SIST - Yuan Xiao

35

Even worse: the CRIME attack wwm

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=b) B ‘

Cookie: uid=jhPL8g69684rksfsdg

Javascript

observe ciphertext size

SIST - Yuan Xiao

36

Even worse: the CRIME attack

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=j
Cookie: uid=jhPL8g69684rksfsdg

Javascript

SIST - Yuan Xiao

ciphertext slightly shorter
= first character of Cookie is “

o:n

37

Even worse: the CRIME attack

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=ja) [‘

Cookie: uid=jhPL8g69684rksfsdg

Javascript

observe ciphertext size

SIST - Yuan Xiao

38

Even worse: the CRIME attack

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

SIST - Yuan Xiao

ciphertext slightly shorter
= 2" character of Cookie is “h”

39

Even worse: the CRIME attack

o

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

S
n'l

Javascript

SIST - Yuan Xiao

Recover entire cookie after
256 x |Cookie| tries

Takes several minutes (5|mpI|f|ed)

What to do?

Disable compression (=

Use a different compression context for parts
under Javascript control and parts that are not

Change secret (Cookie) after every request

Does not eliminate inherent leakage due to compression

Public Key Cryptography

SIST - Yuan Xiao

42

(1) Public-key encryption

Tool for managing or generating symmetric keys

Alice
MR Epk, m)=C Bob
é;ll c D(sk,c)=m

' A\ C IS g
E(pkl m2)=C2
 E-—Encryption alg. pk — Public encryption key
D - Decryption alg. sk — Secret decryption key

Algorithms E, D are publicly know

. L]
uan Alao

43

Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, -) : a one-way function
— Computing y = F(pk, x) is easy
— One-way: given random vy, finding x s.t. y = F(pk,x) is difficult

3. Algorithm F'l(sk,) Invert F(pk, -) using trapdoor SK

Fi(sk, v) = x

Example: RSA

1. KeyGen: generate two equal length primes p, q
set N <« p-q (3072 bits ~ 925 digits)

set e<—21+1=65537 ; d<— e (modo(N))

pk =(N, e) K sk =(N, d)

2. RSA(pk, x): X = (x*mod N)

Inverting this function is believed to be as hard as factoring N

3. RSA™(pk, y) : v — (y9mod N)

SIST - Yuan Xiao

45

Public Key Encryption with a TDF

KeyGen: generate pk and sk “ !

Encrypt(pk, m):
— choose random x € domain(F) andset k <« H(x)

— c, < F(pk,x) , ¢, <« E(k, m) (E: symmetric cipher)

— send c=(c, ¢y)

Decrypt(sk, c=(cy,c,)): x<«— Fl(sk,co) , k<«H(x), m<« Dk, c,)

security analysis in crypto course (cs255)

(2) Digital signatures

Goal: bind document to author
* Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F (sk, H(m))

verify(pk, m, sig) accept if F(pk, sig) = H(m)

Digital sighatures

* Only someone who knows sk can sign a message m

* Anyone who has pk can verify a (msg, signature) pair

sign(sk, m) := F'l(sk, H(m))

verify(pk, m, sig) := acceptif F(pk, sig) =H(m)

IST=YuanmXiao 48

Certificates:

bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Browser

Alice

Pkea

verify
cert

Server Bob

@ Bob’s

E{;ey is pk 3

generate
(sk,pk)

Pkea

pk and

CA

proof “I am Bob”

issue Cert with sk, :

@}ob’s
“key is pk !
e

Bob uses Cert for an extended.period (e.g. one year)

check
proof

Sample certificate:

Issued by

>
'(f)?w’ffr-(ﬂw

et

mail.google.com

:GTS CA1C3

Expires: Sunday, June 19, 2022 at 7:26:20 PM Pacific
Daylight Time

¥ Details

Country
State/Province
Locality
Organization
Common Name

Country
Organization
Common Name

Serial Number
Version
Signature Algorithm

us

California
Mountain View
Google Inc
mail.google.com

us
Google Trust Services
Google Internet Authority G3

3495829599616174946
3
SHA-256 with RSA

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signatl.érles_l_

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp256r1 (1.2.840.10045.3.1.7)
65 bytes : 04 D5 63 FC 4D F9 4E 91....

256 bits

Encrypt, Verify, Derive

25? byte)%.: 3FFE04 7BBEBO 321D ..
- Yuan Alao

51

Signature schemes used in the real world

RSA signature scheme:
* Fast to verify, but signatures are long
e Often used in certificates

ECDSA, Schnorr, BLS signature schemes:
* Faster to generate signature and more compact than RSA
 Used everywhere, other than web certificates

(3) Key exchange

Goal: Browser and Server want a shared secret, unknown to attacker

>
<
Browser . Server
<

I Lattacker ?7? ‘

key - eee key
Example: Diffie-Hellman key exchange.

* Only secure against eavesdropping

 TLS 1.3: enhances Diffie-Hellman key exchange
= security against an active attacker 53

TLS 1.3 session setup (simplified)

/\ Diffie-Hellman key exchange

Client ClientHello: noncec, KeyShare / Server
ServerHello: nonces , KeyShare, Enc[cert§,...] I —
CertVerify: Enc[Sigg(data)] , Finished key

cert
Fnished

—

session-keys <— HKDF(DHkey, nonce., nonce)

Encerted AEEIicationData ;
Encerted AEEIicationData

SIST - Yuan Xiao 55

P rO p e rt i e S @ Connection - secure (strong TLS 1.3)

. Gmail
Nonces: prevent replay of an old session mal

Forward secrecy: server compromise does not expose old sessions
Some identity protection: certificates are sent encrypted

One sided authentication:
— Browser identifies server using server-cert
— TLS has support for mutual authentication
e requires a client pk/sk and client-cert

Summary: crypto concepts

Symmetric cryptography:
Authenticated Encryption (AE) and message integrity

Public-key cryptography:
Public-key encryption, digital signatures, key exchange

Certificates: bind a public key to an identity using a CA
— Used in TLS to identify server (and possibly client)

Modern crypto: goes far beyond basic encryption and signatures

	幻灯片 1
	幻灯片 2: Cryptography
	幻灯片 3: Goal 1: Secure communication
	幻灯片 4: Transport Layer Security / TLS
	幻灯片 5: Goal 2: protected files
	幻灯片 6
	幻灯片 7: Building block: symmetric cipher
	幻灯片 8: Use Cases
	幻灯片 9: First example: One Time Pad (single use key)
	幻灯片 10: One Time Pad (OTP) Security
	幻灯片 11: Stream ciphers (single use key)
	幻灯片 12: Dangers in using stream ciphers
	幻灯片 13: Block ciphers: crypto work horse
	幻灯片 14: Block Ciphers Built by Iteration
	幻灯片 16: AES-NI: AES in hardware (Intel, AMD, ARM)
	幻灯片 17: Incorrect use of block ciphers
	幻灯片 18: In pictures
	幻灯片 19: CTR mode encryption (eavesdropping security)
	幻灯片 20: A Warning
	幻灯片 21: Message Integrity: MACs
	幻灯片 22: Construction: HMAC (Hash-MAC)
	幻灯片 24
	幻灯片 25: Combining MAC and ENC (Auth. Enc.)
	幻灯片 26: AEAD: Auth. Enc. with Assoc. Data
	幻灯片 27: AES-GCM in One Figure
	幻灯片 28: Example AES-GCM functions
	幻灯片 30: Summary
	幻灯片 31
	幻灯片 32: Encryption and compression: oil and vinegar
	幻灯片 33: Trouble … [Kelsey’02]
	幻灯片 34: Even worse: the CRIME attack [RD’2012]
	幻灯片 35: Even worse: the CRIME attack [RD’2012]
	幻灯片 36: Even worse: the CRIME attack [RD’2012]
	幻灯片 37: Even worse: the CRIME attack [RD’2012]
	幻灯片 38: Even worse: the CRIME attack [RD’2012]
	幻灯片 39: Even worse: the CRIME attack [RD’2012]
	幻灯片 40: Even worse: the CRIME attack [RD’2012]
	幻灯片 41: What to do?
	幻灯片 42
	幻灯片 43: (1) Public-key encryption
	幻灯片 44: Building block: trapdoor permutations
	幻灯片 45: Example: RSA
	幻灯片 46: Public Key Encryption with a TDF
	幻灯片 47: (2) Digital signatures
	幻灯片 48: Digital signatures
	幻灯片 50: Certificates: bind Bob’s ID to a PK
	幻灯片 51
	幻灯片 52: Signature schemes used in the real world
	幻灯片 53: (3) Key exchange
	幻灯片 55: TLS 1.3 session setup (simplified)
	幻灯片 56: Properties
	幻灯片 63: Summary: crypto concepts

