
CS 253 Cyber Security
Cryptography

ShanghaiTech University

1SIST - Yuan Xiao

Cryptography
Is:

– A tremendous tool for protecting information

– The basis for many security mechanisms

Is not:

– The solution to all security problems

– Reliable unless implemented and used properly

– Something you should try to invent yourself

SIST - Yuan Xiao 2

Goal 1: Secure communication

no eavesdropping
no tampering

(protecting data in motion)

SIST - Yuan Xiao 3

Transport Layer Security / TLS
Standard for Internet security

– Goal: “... provide privacy and reliability between two
communicating applications”

Two main parts

1. Handshake Protocol: Establish shared secret key
using public-key cryptography

2. Record Layer: Transmit data using negotiated key

 Our starting point: Using a key for encryption and integrity
SIST - Yuan Xiao 4

Goal 2: protected files

File system

File 1

File 2

Alice Alice

No eavesdropping
No tampering

(protecting data at rest)

SIST - Yuan Xiao 5

PART ONE0 1
Symmetr ic Cipher

SIST - Yuan Xiao 6

Building block: symmetric cipher

E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext n: nonce (non-repeating)

Encryption algorithm is publicly known

 ⇒ never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

SIST - Yuan Xiao 7

Use Cases
Single use key: (one time key)

• Key is only used to encrypt one message

• encrypted email: new key generated for every email

• No need for nonce (set to 0)

Multi use key: (many time key)

• Key is used to encrypt multiple messages or multiple files

• TLS: same key used to encrypt many frames

• Use either a unique nonce or a random nonce
SIST - Yuan Xiao 8

First example: One Time Pad (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:



1 0 0 1 1 0 1 0 01Ciphertext:

Encryption: c = E(k, m) = m ⨁ k

Decryption: D(k, c) = c ⨁ k = (m ⨁ k) ⨁k = m
SIST - Yuan Xiao 9

One Time Pad (OTP) Security

Shannon (1949):

– OTP is “secure” against one-time eavesdropping

– without key, ciphertext reveals no “information”
about plaintext

Problem: OTP key is as long as the message

SIST - Yuan Xiao 10

Stream ciphers (single use key)

Problem: OTP key is as long as the message

Solution: Pseudo random key -- stream ciphers

Example: ChaCha20 (one-time if no nonce) key: 128 or 256 bits.

key

PRG

message


ciphertext

c  PRG(k)  m

SIST - Yuan Xiao 11

Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

 c1  m1  PRG(k)

 c2  m2  PRG(k)

Eavesdropper does:

 c1  c2 → m1  m2

Enough redundant information in English that:

 m1  m2 → m1 , m2

What if want to use
same key to encrypt
two files?

SIST - Yuan Xiao 12

Block ciphers: crypto work horse

E, D CT Block

n bits

PT Block

n bits

Key k Bits

Canonical examples:

1. 3DES (old): n= 64 bits, k = 168 bits

2. AES: n=128 bits, k = 128, 192, 256 bits
SIST - Yuan Xiao 13

Block Ciphers Built by Iteration

R(k,m): round function

 for AES128: 10 rounds, AES256: n=14 rounds

key k

key expansion

k1 k2 k3 kn

R
(k

1
, 

)

R
(k

2
, 

)

R
(k

3
, 

)

R
(k

n
, 

)

m c

SIST - Yuan Xiao 14

AES-NI: AES in hardware (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:

• aesenc, aesenclast: one round of AES

 aesenc xmm1, xmm2 (result written to xmm1)

• aesdec, aesdeclast: one round of AES

• aeskeygenassist: do AES key expansion

⟹ more than 10x speedup over a software AES

⟹ better security: all AES instructions are constant time

round keystate

SIST - Yuan Xiao 16

Incorrect use of block ciphers

Electronic Code Book (ECB):

 Problem:

– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

SIST - Yuan Xiao 17

In pictures

SIST - Yuan Xiao 18

CTR mode encryption (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)


c[0] c[1] … c[L]

IV

IV

ciphertext

Why is this secure for multiple messages? See the crypto course
 (Prof. Zhang Liangfeng)SIST - Yuan Xiao 19

A Warning

eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.

 CTR mode is insecure against active attacks!

Next: methods to ensure message integrity

SIST - Yuan Xiao 20

Message Integrity: MACs

• Goal: provide message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k k
message m tag

Generate tag:

 tag  S(k, m)

Verify tag:

 V(k, m, tag) = `yes’
?

SIST - Yuan Xiao 21

Construction: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

 H: hash function.

 example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

– Standardized method: HMAC

 S(k, msg) = H(kopad ‖ H(kipad ‖ msg))
SIST - Yuan Xiao 22

Why is this MAC construction secure?

 … see the crypto course (Prof. Zhang Liangfeng)

SIST - Yuan Xiao 24

Combining MAC and ENC (Auth. Enc.)

 Encryption key kE. MAC key = kI

Option 1: (SSL)

Option 2: (IPsec, TLS 1.3)

Option 3: (SSH)

msg m msg m MAC

enc kE
MAC(kI, m)

msg m

Enc kE

MAC

MAC(kI, c)

msg m

enc kE

MAC

MAC(kI, m)

always
correct

SIST - Yuan Xiao 25

AEAD: Auth. Enc. with Assoc. Data

AES-GCM: CTR mode encryption then MAC

 (MAC accelerated via Intel’s PCLMULQDQ instruction)

AEAD:

encrypted dataassociated data

authenticated

encrypted

SIST - Yuan Xiao 26

AES-GCM in One Figure

SIST - Yuan Xiao 27

Example AES-GCM functions
int encrypt(

 unsigned char *key, // key

 unsigned char *iv, int iv_len, // nonce

 unsigned char *plaintext, int plaintext_len, // plaintext

 unsigned char *aad, int aad_len, // assoc. data

 unsigned char *ciphertext) // output ct

int decrypt(// error if invalid MAC on (aad, ciphertext)

 unsigned char *key, // key

 unsigned char *ciphertext, int ciphertext_len, // plaintext

 unsigned char *aad, int aad_len, // assoc. data

 unsigned char *plainrtext) // output pt
SIST - Yuan Xiao 28

Summary
Shared secret key:

• Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]

• One-time key: ex: a stream cipher

• Many-time key: ex: AES-CTR with a unique/random nonce

Integrity: HMAC

Authenticated encryption: encrypt-then-MAC using AES-GCM

SIST - Yuan Xiao 30

PART TWO0 2
Encrypt ion and Compression Problems

SIST - Yuan Xiao 31

Encryption and compression: oil and vinegar

HTTP: uses compression to reduce bandwidth

Option 1: first encrypt and then compress

• Does not work … ciphertext looks like a random string

Option 2: first compress and then encrypt

• Used in many Internet protocols (TLS, HTTP, QUIC, …)

• Trouble …
SIST - Yuan Xiao 32

Trouble … [Kelsey’02]

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl

Cookie: uid=jhPL8g69684rksfsdg

POST /bank.com/buy?id=goog

Cookie: uid=jhPL8g69684rksfsdg

Second message compresses better than first:

 network observer can distinguish the two messages!
SIST - Yuan Xiao 33

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=aapl

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

Javascript can issue requests to Bank,
but cannot read Cookie value

(simplified)

SIST - Yuan Xiao 34

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=a
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

SIST - Yuan Xiao 35

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=b
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

SIST - Yuan Xiao 36

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=j
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

ciphertext slightly shorter
 ⇒ first character of Cookie is “j”
SIST - Yuan Xiao 37

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=ja
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

SIST - Yuan Xiao 38

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

ciphertext slightly shorter
 ⇒ 2nd character of Cookie is “h”

SIST - Yuan Xiao 39

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

Recover entire cookie after
 256 × |Cookie| tries

Takes several minutes (simplified)
SIST - Yuan Xiao 40

What to do?

• Disable compression

• Use a different compression context for parts
under Javascript control and parts that are not

• Change secret (Cookie) after every request

Does not eliminate inherent leakage due to compression

SIST - Yuan Xiao 41

PART THREE0 3
Publ ic Key Cryptography

SIST - Yuan Xiao 42

(1) Public-key encryption
Tool for managing or generating symmetric keys

• E – Encryption alg. pk – Public encryption key

• D – Decryption alg. sk – Secret decryption key

Algorithms E, D are publicly known.

Alice1
E

m1 E(pk, m1)=c1
Bob

D
c D(sk,c)=m

Alice2

E
m2

E(pk, m2)=c2

SIST - Yuan Xiao 43

Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ) : a one-way function

– Computing y = F(pk, x) is easy

– One-way: given random y, finding x s.t. y = F(pk,x) is difficult

3. Algorithm F
-1

(sk, ) : Invert F(pk, ) using trapdoor SK

 F
-1(sk, y) = x

SIST - Yuan Xiao 44

Example: RSA
1. KeyGen: generate two equal length primes p, q

 set N  pq (3072 bits  925 digits)

 set e  216+1 = 65537 ; d  e-1
 (mod (N))

 pk = (N, e) ; sk = (N, d)

2. RSA(pk, x) : x → (xe mod N)

 Inverting this function is believed to be as hard as factoring N

3. RSA
-1

(pk, y) : y → (yd mod N)
SIST - Yuan Xiao 45

Public Key Encryption with a TDF

KeyGen: generate pk and sk

Encrypt(pk, m):

– choose random x  domain(F) and set k  H(x)

– c0  F(pk, x) , c1  E(k, m) (E: symmetric cipher)

– send c = (c0, c1)

Decrypt(sk, c=(c0,c1)): x  F-1(sk, c0) , k  H(x) , m  D(k, c1)

security analysis in crypto course (cs255)

c0 c1

SIST - Yuan Xiao 46

(2) Digital signatures

Goal: bind document to author

• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)
SIST - Yuan Xiao 47

Digital signatures

Goal: bind document to author

• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)

• Only someone who knows sk can sign a message m

• Anyone who has pk can verify a (msg, signature) pair

SIST - Yuan Xiao 48

Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkBob ?

CA

pk and
proof “I am Bob”

Browser
Alice

skCA

check
proofissue Cert with skCA :

Bob’s
key is pkBob’s

key is pk

generate
 (sk,pk)

Server Bob

pkCA

verify
cert

Bob uses Cert for an extended period (e.g. one year)

pkCA

SIST - Yuan Xiao 50

Sample certificate:

SIST - Yuan Xiao 51

Signature schemes used in the real world

RSA signature scheme:

• Fast to verify, but signatures are long

• Often used in certificates

ECDSA, Schnorr, BLS signature schemes:

• Faster to generate signature and more compact than RSA

• Used everywhere, other than web certificates

SIST - Yuan Xiao 52

(3) Key exchange

ServerBrowser

Goal: Browser and Server want a shared secret, unknown to attacker

Example: Diffie-Hellman key exchange.

• Only secure against eavesdropping

• TLS 1.3: enhances Diffie-Hellman key exchange
 ⟹ security against an active attacker

attacker ??
key key

SIST - Yuan Xiao 53

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret
key

Finished

session-keys  HKDF(DHkey, nonceC , nonceS)

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange

SIST - Yuan Xiao 55

Properties

Nonces: prevent replay of an old session

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted

One sided authentication:

– Browser identifies server using server-cert

– TLS has support for mutual authentication

• requires a client pk/sk and client-cert

Gmail

SIST - Yuan Xiao 56

Summary: crypto concepts

Symmetric cryptography:

 Authenticated Encryption (AE) and message integrity

Public-key cryptography:

 Public-key encryption, digital signatures, key exchange

Certificates: bind a public key to an identity using a CA

– Used in TLS to identify server (and possibly client)

Modern crypto: goes far beyond basic encryption and signatures
SIST - Yuan Xiao 63

	幻灯片 1
	幻灯片 2: Cryptography
	幻灯片 3: Goal 1: Secure communication
	幻灯片 4: Transport Layer Security / TLS
	幻灯片 5: Goal 2: protected files
	幻灯片 6
	幻灯片 7: Building block: symmetric cipher
	幻灯片 8: Use Cases
	幻灯片 9: First example: One Time Pad (single use key)
	幻灯片 10: One Time Pad (OTP) Security
	幻灯片 11: Stream ciphers (single use key)
	幻灯片 12: Dangers in using stream ciphers
	幻灯片 13: Block ciphers: crypto work horse
	幻灯片 14: Block Ciphers Built by Iteration
	幻灯片 16: AES-NI: AES in hardware (Intel, AMD, ARM)
	幻灯片 17: Incorrect use of block ciphers
	幻灯片 18: In pictures
	幻灯片 19: CTR mode encryption (eavesdropping security)
	幻灯片 20: A Warning
	幻灯片 21: Message Integrity: MACs
	幻灯片 22: Construction: HMAC (Hash-MAC)
	幻灯片 24
	幻灯片 25: Combining MAC and ENC (Auth. Enc.)
	幻灯片 26: AEAD: Auth. Enc. with Assoc. Data
	幻灯片 27: AES-GCM in One Figure
	幻灯片 28: Example AES-GCM functions
	幻灯片 30: Summary
	幻灯片 31
	幻灯片 32: Encryption and compression: oil and vinegar
	幻灯片 33: Trouble … [Kelsey’02]
	幻灯片 34: Even worse: the CRIME attack [RD’2012]
	幻灯片 35: Even worse: the CRIME attack [RD’2012]
	幻灯片 36: Even worse: the CRIME attack [RD’2012]
	幻灯片 37: Even worse: the CRIME attack [RD’2012]
	幻灯片 38: Even worse: the CRIME attack [RD’2012]
	幻灯片 39: Even worse: the CRIME attack [RD’2012]
	幻灯片 40: Even worse: the CRIME attack [RD’2012]
	幻灯片 41: What to do?
	幻灯片 42
	幻灯片 43: (1) Public-key encryption
	幻灯片 44: Building block: trapdoor permutations
	幻灯片 45: Example: RSA
	幻灯片 46: Public Key Encryption with a TDF
	幻灯片 47: (2) Digital signatures
	幻灯片 48: Digital signatures
	幻灯片 50: Certificates: bind Bob’s ID to a PK
	幻灯片 51
	幻灯片 52: Signature schemes used in the real world
	幻灯片 53: (3) Key exchange
	幻灯片 55: TLS 1.3 session setup (simplified)
	幻灯片 56: Properties
	幻灯片 63: Summary: crypto concepts

