CS 253 Cyber Security
Building Secure Web Apps

iversity -

ShanghaiTech Un

SIST - Yuan Xiao

Admin

Project 2 is released
Spectre Attack (classical ver.) demo

Code skeleton can be found on course website or Piazza
resources

Submission on Gradescope (C code)

Keep in mind that ONLY your LAST ACTIVE uploaded version
will be graded

Deadline 11/15 (Sat) 23:59

Cross-Site Request Forgery (CSRF)

SIST - Yuan Xiao

Cross-Site Request Forgery (CSRF)

r

® o gjttacker.com POST /transfer

S.post({url: “api.bank.com/account™, .. @ <
api.bank.com

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the server trusts

In a CSRF attack, a user Is tricked into submitting an unintended (often unrealized)
web request to a website — generally takes advantage of session cookies

You need to actively build defenses into web apps to protect against CSRF attacks

SIST - Yuan Xiao

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request Is
authentic (coming from a trusted page)

Three commonly used techniques to validate intent:
- Referer Header Validation
- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:

- sameSite Cookies
SIST - Yuan Xiao

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application
submitted request since they’re included In every (in-scope) request

We need another mechanism that allows us to ensure that a request Is
authentic (coming from a trusted page)

aree TWo commonly used techniques to validate intent:

-

Laaba B £, Dl A B (\Q_r.* VW ~ 8
B R A T S T U D R A A AR S I o ey

Form Submissions

Javascript Requests

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:
- sameSite Cookies

- Secret Validation Token

SIST - Yuan Xiao

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application

What about GET Requests?

NEVER Change Application
State based on a GET request

Or, simply, don't send cookies to other domains:

- sameSite Cookies
SIST - Yuan Xiao

sameSite Cookies

Cookies that match the domain of the current site, I.e. what's currently displayed In
the browser's address bar, are referred to as first-party cookies

Cookies from domains other than the current site are third-party cookies
Cookies marked as sameSite are only sent If first party

S Will not be sent for image,
form post if URL bar = origin of resource

Two Modes

samesSite cookie setting can be In two modes:

Strict Mode (SameSite=Strict): The cookie will only be sent if the site for the
cookie matches the site currently shown in the browser's URL bar.

Problem: If you're on Site A, click on a link to Site B, then Site B won't
receive cookie because when you clicked on the link, URL bar said Site A (or,
If you simply typed the site into the URL bar

Lax Mode (SameSite=Lax): Allows cookie to be sent with these top-level
navigations.

A Properly Secured Cookie

1. Don't set domain, unless you need to (Increases scope)

2. Add Necessary Security Restrictions

Only Allowed Over
HTTPS

Set-Cookie: key=value; Secure; HttpOnly;
SameSite=Lax;

Don’t Allow Javascript
Access through DOM
Prevent CSRF Attacks

SIST - Yuan Xiao

10

SQL Injection

SIST - Yuan Xiao

11

Command Injection

The goal of command injection attacks Is to execute an arbitrary command on the
system. Typically possible when a developer passes unsafe user data into a shell.

Example: head100 — simple program that cats first 100 lines of a program

int mailn(int argc, char **argv) {
char *cmd = malloc(strlen(argv[l]) + 100);
strcpy (cmd, “head -n 100 7);
strcat (cmd, argv[l]);
system(cmd) ;

Command Injection

Source:

int mailn(int argc, char **argv) {
char *cmd = malloc(strlen(argv[l]) + 100);
strcpy (cmd, “head —-n 100 7);
strcat (cmd, argv[l]);
system(cmd) ;

Normal Input:

./headl0 myfile.txt -> system(“head -n 100 myfile.txt”)

Command Injection

Source:

int mailn(int argc, char **argv) {
char *cmd = malloc(strlen(argv[l]) + 100);
strcpy (cmd, “head -n 100 7);
strcat (cmd, argv|[l]);
system (cmd) ;

Adversarial Input:

./headl0 “myfile.txt; rm -rf /home”
-> gystem(“head -n 100 myfile.txt; rm -rf /home”);

SQL Injection

Last examples all focused on shell injection

Command injection oftentimes occurs when developers try to
build SQL queries that use user-provided data

Known as SQL injection

SQL Injection Example

Slogin = $ POST['login'];
Spass = S POST['password'];

o Ssgl = "SELECT id FROM users
—— WHERE username = '$login'
Forgot Username / Password? AN D p a S S WO T d p— ' $ p a S S W O e d V77 ;

Srs = Sdb->executeQuervy($sql) ;

[—

1f Srs.count > 0 {

// success

SIGN UP NOW

SIST - Yuan Xiao

Su = $ POST['login’]; // zakir

Spp =

Ssqgl =

Srs =

S POST['password'];

EL

ECT 1d FROM users WHE

// 123

Sdb->executeQuervy (Ssqgl) ;

1f Srs.count > 0 /{
// success

E uid

Non-Malicious Input

'$u|

AND pwd

'$p

V77,

Non-Malicious Input

Su = $ POST['login’]; // zakir
Spp = $ POST['password']; // 123

'Su' AND pwd = 'Sp
'zakir' AND pwd =

Ssgl = "SELECT id FROM users WHERE uid
// "SELECT 1d FROM users WHERE uid
Srs = Sdb->executeQuery($sqgl) ;
if Srs.count > 0 {

// success

/A
’

1123l”

Bad Input

Su = $ POST['login’]; // zakir
Spp = $ POST['password']; // 123"

Ssgl = "SELECT id FROM users WHERE uid
// "SELECT 1d FROM users WHERE uid
Srs = $Sdb->executeQuery ($sqgl);

// SQL Syntax Error

1f Srs.count > 0 {
// success

SIST - Yuan Xiao

'Su' AND pwd = 'Sp
'zakir' AND pwd =

/A
’

l123||”

19

Malicious Input

Su = $ POST['login']; // zakir --
Spp = $ POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'”;
// "SELECT id FROM users WHERE uid = 'zakir'-- AND pwd..”
Srs = Sdb->executeQuery($sqgl) ;

// (No Error)

1f Srs.count > 0 {
// Success'!

SIST - Yuan Xiao

No Username Needed!

Su = $ POST['login’]; // 'or 1=1 --
Spp = $ POST['password']; // 123

Ssgql = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'”;
// "SELECT id FROM users WHERE uid = ''or 1=1 -- AND pwd..”
Srs = Sdb->executeQuery ($sqgl) ;

// (No Error)

1f Srs.count > 0 {
// Success'!

SIST - Yuan Xiao

21

Causing Damage

Su = $ POST[‘login’]; // '; DROP TABLE [users] --

Spp = $ POST['password']; // 123

Ssgl = "SELECT id FROM users WHERE uid =
// "SELECT i1d FROM users WHERE uid =
Srs = Sdb->executeQuery($sqgl) ;

// No Error..(and no more users table)

SIST - Yuan Xiao

'$U' AND de — l$pv”;
' 'DROP TABLE [users]--"

22

MSSQOQL xp cmashell

Microsoft SQL server lets you run arbitrary system commands!

xp cmdshell { 'command string' } [, no output]

“‘Spawns a Windows command shell and passes in a string for execution.
Any output Is returned as rows of text.”

Escaping Database Server

Su = $ POST['login']; // '; exec xp cmdshell 'net user add usr pwd'--
Spp = $ POST]['password']; // 123

Ssgl = "SELECT id FROM users WHERE uid = '$Su' AND pwd = 'Sp'”;
// "SELECT id FROM users WHERE uid = '';
exec xXp cmdshell 'net user add usr pwdl23'-- "

Srs = Sdb->executeQuerv ($Ssqgl) ;
// No Error..(and with a resulting local system account)

SIST - Yuan Xiao 24

Preventing SQL Injection

Never trust user input (particularly when constructing a command)
Never manually build SQL commands yourself!

There are tools for safely passing user input to databases:
* Parameterized (AKA Prepared) SQL

°* ORM (Object Relational Mapper) -> uses Prepared SQL internally

Parameterized SQL

Parameterized SQL allows you to send query and arguments separately to server

sgql = “INSERT INTO users (name, email) VALUES(?,7?)” \ Values are sent to server
cursor.execute (sgl, ['Dan Boneh', ‘dabo@stanford.edu']) separately from command.

/ Library doesn’t need to escape
sql = "SELECT * FROM users WHERE email = 2"

cursor.execute(sqgl, [‘zakird@stanford.edu'])

Benefit 1: No need to escape untrusted data — server handles behind the scenes
Benefit 2. Parameterized queries are faster because server caches query plan

Obpject Relational Mappers

Object Relational Mappers (ORM) provide an interface between native objects
and relational databases.

class User (DBObject) :

_1d = Column(Integer, primary key=True)
name = Column (String(255))
emall = Column (String(255), unique=True)
if name == " main ":
users = User.query(emall='zaklrdldstanford.edu') .all/()

session.add (User (email="daboldstanford.edu', name='Dan BRoneh'))
session.commit ()

Cross Site Scripting (XSS)

SIST - Yuan Xiao

28

Command Injection

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends It to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting (XSS)

attacker’s malicious code is attacker’s malicious code is
executed on app’s server executed on victim’'s browser

Both due to mixing untrusted user content and code to be executed
SIST - Yuan Xiao

29

Content Security Policy (CSP)

You're always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy Isan HTTP header that servers can send that
declares which dynamic resources (e.g., Javascript) are allowed to execute

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
Implementation incorrect.

Example CSP—Javascript

Policies are defined as a set of directives for where different types of
resources can be fetched. For example:

p

Content-Security-Policy: script-src 'sel:

— Javascript can only be loaded from the same domain as the page
— No Javascript from any other origins will be executed
— No Inline <script></script> will be executed

Clickjacking Attacks

SIST - Yuan Xiao

32

Clickjacking

Attacker uses a transparent frame to trick a user into clicking on a button or
link on another page when they were intending to click on the top level page.

SIST - Yuan Xiao

https://www.invicti.com/

33

Incorrect solution: framebusting

If (top = self) { top.location = self.location; }

®no Mozilla Firefox MO Google =

|4) > = 'l;g;' l\) r;ﬁ) (E] http: / /www.stanford.edu/~rydstedt/trybust/framed.F 1.7 v 1= =" Coogl { 4)_/1" .\g/, f\) (zi;ﬁ' C-" http://www.google.com/ "oy (‘" u00gl€ Q

y - . -

Most Visited - Stanford - printing.stanford.edu Most Visited -~ Stanford - printing.stanford.edu

Web Images Videos Maps News Shopping Gmail more v iGoogle | Search settings | Sign in

GO«)gle

Web Images Videos Maps News Shopping Gmail more v

iGoogle | Search settings | Sign in

Acvanced Search
Language Tools

Google Search | I'm Feeling Lucky
Google Search | I'm Feeling Lucky J

Advertising Programs - Business Solutions - About Google

Advertising Programs - Business Solutions - About Google

Easy for parent to intercept and block call to change URL of page
SIST - Yuan Xiao

Correct Solution: CSP

web browser

example.com

HTTP response from server:

HTTP/1.1 200 OK

Content-Security-Policy: frame-ancestors 'none’;

frame-ancestors ‘self’ ;
means only example.com
can frame page

<iframe src=‘example.com’>
will cause an error

SIST - Yuan Xiao

35

Sub-Resource Integrity

SIST - Yuan Xiao

36

Third-Party Content Safety

Question: how do you safely load an object from a third party service?

<script src="https://code.jquery.com/jquery-3.4.0.3s"></script>

If code.jguery.com IS compromised, your site is too!

MaxCDN Compromise

2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Bootstrap 4

Sub-Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
src="https://code.jgquery.com/Jjgquery-3.4.0.min.js"
integrity="sha’Z256-BJeo0gm959uMBGb652z40e]JYGSgR1 fNKwOg="

/>

Sub-Resource Integrity (SRI)

<script src="https://code.jquery.com/jquery-3.5.1.min.s”
integrity="sha256-9/aliU8dGd2tb60SsuzixeV4y/faTqgFtohetphbbj0="

crossorigin="anonymous">
</script>

Browser: (1) load sub-resource, (2) compute hash of contents,
(3) compare value to the integrity attribute.

* if hash mismatch: script or stylesheet are not executed
and an error is raised.

Enforce SRIwith CSP

web browser example.com

HTTP response from server:

HTTP/1.1 200 OK

Content-Security-Policy: require-sri-for script style;

Requires SRI for all scripts and style sheets on page

SIST - Yuan Xiao

41

Securely Using Cookies

SIST - Yuan Xiao

42

Cookies have no integrity

Users can change and delete cookie values
* Edit cookie database (FF: cookies.sqglite)

* Modify Cookie header (FF: TamperData extension)

Shopping cart software

Set—cookie:

User edits cookie file (cookie poisoning):

Cookie:

shopping-cart-total = 15 (9)

shopping-cart-total = 150 ($)

Similar problem with localStorage and hidden fields:

<

INPUT TYP.

="hidden”

NAM.

E="150">

s=price VALU

Sign Cookies if Data

Goal: data integrity

Requires server-side secret key k unknown to browser

Generate tag: T — MAGCsign(k, (SID, name, value))

Set-Cookie: NAME = value

Browser

Cookie: NAME = \

Verify tag: MACverify(k, (SID, name, value), T)

value

Binding to session-id (SID) makes it harder to replay old cookies

SIST - Yuan Xiao 44

Protecting Cookies

Remember that you also need to limit the scope of when cookie
can be used:

Set-Cookie: Id=a3fWa;
Expires=Wed, 21 Oct 2015 07:28:00 GMT;
sameSite=Strict;
Secure;
HttpOnly

Authentication and
Session Management

SIST - Yuan Xiao

46

Pre-history: HTTP auth

HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required”

Sign in

https://crypto.stanford.edu

Cance Sign In

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRIeHQ=

HTTP auth problems

Hardly used in commercial sites:

 User cannot log out other than by closing browser

— What if user has multiple accounts?
multiple users on same machine?

e Site cannot customize password dialog

* Confusing dialog to users

» Easily spoofed Do not use ...

Session Management Today

GET/HTTP/1.1

cookies:] Create

Anonymous
HTTP/1.0 200 OK Session ID

cookies: [session: e82a7b92]

<htmI><hl1>Welcomel</hl1></html>

SIST - Yuan Xiao 49

Session Management Today

GET/HTTP/1.1

cookies:] Create

Anonymous
HTTP/1.0 200 OK Session ID

cookies: [session: e82a7b92]

. <htmI><hl1>Welcome!</h1></html>
GET /loginform HTTP/1.1

cookies: [session: e82a7b92]
—>
HTTP/1.0 200 OK

cookies: [session: e82a7b92]

R e —
<html><form>...</form></html>

SIST - Yuan Xiao 50

Session Management Today

GET/HTTP/1.1

Create

cookies: []
Anonymous

HTTP/1.0 200 OK Session ID
cookies: [session: e82a7b92]

. <htmI><hl1>Welcome!</h1></html>
GET /loginform HTTP/1.1

cookies: [session: e82a7b92]

—>
HTTP/1.0 200 OK

cookies: [session: e82a7b92]

e —————— Check

POST /login HTTP/1.1 <html><form>...</form></ntml> REEFEEIE

cookies: [session: e82a7b92]

+ Upgrade
—>
HTTP/1.0 200 OK Token

username: zakir

cookies: [session: e82a7b92]

password: stanford
-—-e_m -

<htmI><hl>Login Success</h1></html|>

SIST - Yuan Xiao 51

Session Management Today

GET/HTTP/1.1

Create

cookies: []
Anonymous

HTTP/1.0 200 OK Session ID
cookies: [session: e82a7b92]

. <htmI><hl1>Welcome!</h1></html>
GET /loginform HTTP/1.1

cookies: [session: e82a7b92]

—>
HTTP/1.0 200 OK

cookies: [session: e82a7b92]

e —————— Check

POST /login HTTP/1.1 <html><form>...</form></ntml> REEFEEIE

cookies: [session: e82a7b92]

+ Upgrade
—>
HTTP/1.0 200 OK Token

username: zakir

cookies: [session: e82a7b92]

password: stanford
-—-e_m -

<htmI><hl>Login Success</h1></html|>

GET /account HTTP/1.1

_—
52

cookies: [session: e82a7b92] SIST - Yuan Xiao

Session Tokens

Example 1: counter

Session / = user logs in, gets counter value,
Token can view sessions of other users

Pitfalls
Example 2: weak MAC. token = { userid, MAC,(userid) }
e Weak MAC exposes k from few cookies.

Gession tokens must be unpredictable to attacker \

To generate: use underlying framework (e.g. ASP, Tomcat, Rails)

Rails: token = SHA256(current time, random nonce)

" J

Implementing Logout

Web sites must provide a logout function:
* Functionality: let user to login as different user

* Security: prevent others from abusing account

What happens during logout:
1. Delete SessionToken from client
2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !
= Especially risky in case of XSS vulnerability

How do you delete a cookie?

Cookies can have expiration dates

Set-Cookie: sessionID=XYZ,; Expires=<Date>

To delete a cookie, set expiration to the past:

Set-Cookie: sessionlID=;
Expires=Thu, 01 Jan 1970 00:00:00 GMT

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input

- Don't trust anything that can provide you your password

Authenticating Users

Plain Text Passwords (Terrible)

- Store the password and check match against
user input

- Don't trust anything that can provide you
your password

Store Password Hash (Bad)

- Store SHA-1(pw) and check match against
SHA-1(input)

- Weak against attacker who has hashed
common passwords

Input

Fox

cryptographic
hash
function

Digest

DFCD 3454 BBEA 788A 751
696C 24D9 70092 CA99 2D1

The red fox
jumps over
the blue dog

cryptographic
hash
function

0086 46BB FB7D CBE2Z2 823C
ACC7 6CD1 90B1 EE6E 3ABC

The red fox
jumps ouer
the blue dog

cryptographic
hash
function

8FD8 7558 7851 4F32 D1C
76B1 79A9 0DA4 AEFE 481

The red fox
jumps oevr
the blue dog

cryptographic
hash
function

FCD3 7FDB 5AF2 C6FF 915
D401 COA9 7D9A 46AF FB4

The red fox
jumps oer
the blue dog

cryptographic
hash
function

8ACA D682 D588 4C75 4BF
1799 7D88 BCF8 92B9 6A6

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don't trust anything that can provide you your password

Store Password Hash (Bad)
- Store SHA-1(pw) and check match against SHA-1(input)
- Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
- Store (r, Hash(pw| |r)) and check against Hash (input| | r)
- Prevents attackers from pre-computing password hashes

Authenticating Users

Store Salted Hash (Best)
- Store (r, H(pw || r)) and check match against H(input || r)

- Prevents attackers from pre-computing password hashes

Making sure to choose an H that's expensive to compute:
SHA-512: 3,235 MH/s
SHA-3 (Keccak): 2,500 MH/s
BCrypt: 43,551 H/s

Use bcrypt and salt passwords Iif you're storing passwords!

Password Requirement Downfalls

Complexity (e.g., as measured by entropy) isn't necessarily strong — users
add complexity in predictable ways

Requiring users to regularly change passwords leads to weak passwords

Length Is the most important factor for a secure password

Modern Password Recommendations

* Minimum password length should be at least 8 characters
* Maximum password length should be at least 64 characters
* Do not allow unlimited length, to prevent denial-of-service
* Common gotcha: bcrypt has a max length of 72 ASCII characters
* Check passwords against known breach datasets
* Rate-limit authentication attempts

* Encourage/require use of a second factor

Designing Login Workflows

* Helpful error messages can leak information to attackers
* “Invalid User ID”
* “Invalid password for User X"
* “Login failed; account disabled”
* Correctresponse:
* “Login failed; invalid User ID or Password”

* Not only login — think about User Registration and Password Reset

Designing Login Workflows

* Helpful error messages can leak information to attackers

* “Invalid User ID”

e “Invalid password for User X’ In general, error messages should not leak any
* "Login failed; account disabled"

Information about the state of a system
((l)n t%e web or eyond?l 4

* Correctresponse:

* “Login failed; invalid User ID or Password”

* Not only login — think about User Registration and Password Reset

SIST - Yuan Xiao 63

Preventing Guessing

* |t's your responsiblility to also prevent attackers from guessing
passwords of your users:

e Limitthe rate at which an attacker can make authentication
attempts, or delay incorrect attempts

e Track of IP addresses and limit the number of unsuccessful
attempts

e Temporarily lock user account after too many unsuccessful
attempts

Phishing

SIST - Yuan Xiao

65

What do Passwords Protect Against?

* A strong password can protect against:

* Password spray: Testing a weak password against large number of accounts

e Brute force: Testing multiple passwords from dictionary or other source
against a single account

* But do not protect against:
* Credential stuffing: Replaying passwords from a breach
* Phishing: Man-in-the-middle, credential interception
* Keystroke logging: Malware, sniffing

* Extortion: Blackmall, insider threat

Phishing

e Acting like a reputable entity to trick the user into divulging sensitive
Information such as login credentials or account information

* Often easler than attacking the security of a system directly

* Just get the user to tell you their password

Hey there! X =+

€ O & https://www.apple.com

& www.apple.com

Secure Connection

Internationalized Domain Names (IDN)

* Domain names consist of ASCII characters

e Hostnames containing Unicode characters are transcoded to subset of
ASCII consisting of letters, digits, and hyphens called punycode

* Allows registering domains with foreign characters!

* munchen.example.com — xn--mnchen-3ya.example.com

IDN homograph attack

e Many Unicode characters are difficult to distinguish from common ASCI|
characters

* apple.com vs. apple.com

d .

XNn--pple-43d.com apple.com

Did you mean apple.com?

The site you just tried to visit looks fake. Attackers sometimes mimic sites by making

small, hard-to-see changes to the URL.

CIgnore) Go to apple.com

SIST - Yuan Xiao

/70

(Google Safe Browsing

 Google maintains a list of o

known malware and phishing Dangerous site
" Attackers on the site you're trying to visit might trick you into installing software or
U R LS trl e S tO p rOte Ct u S e r revealing things like your password, phone, or credit card number. Chrome strongly
recommends going back to safety. Learn more

 But, how do you let users look

up dangerous sites without
leaking all traffic to Google?

v urn on enhanced protection to get Chrome's highest level of security

SIST - Yuan Xiao 71

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8del3’, ‘bb90a0f1]

Safe

Web .
Browsing

Server

Browser

SIST - Yuan Xiao

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8del3’, ‘bb90a0f1]

Web Is “evil.example.com/blah" Safe

Browser

Browsing

safe?
Server

SIST - Yuan Xiao

http://evil.example.com/blah

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8del3’, ‘bb90a0f1]

Safe

Web Is “evil.example.com/blah"

Browsin
safe? 9

Server

Browser

Calculate: combinations =
H(“evil.example.com"),
H(“example.com"),
H(“evil.example.com/blah"),
H(“example.com/blah")

] =[1a02...28", 'bb90...9f",

‘7a9e...67', ‘bac8...fa']

SIST - Yuan Xiao

http://evil.example.com/blah
http://evil.example.com
http://example.com
http://evil.example.com/blah
http://example.com/blah

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8del3’, ‘bb90a0f1]

Safe

Web

Is “evil.example.com/blah"
safe?

Browsing
Server

Browser

Are any of [1a02...°, 'bb90...",

"7a9e...", ‘bac8...’] present?
L , >

SIST - Yuan Xiao

http://evil.example.com/blah

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8del3’, ‘bb90a0f1]

Safe

Web

Is “evil.example.com/blah"
safe?

Browsing
Server

Browser

Are any of [1a02...°, 'bb90...",

"7a9e...", ‘bac8...’] present?
L , >

NO

O Safel

SIST - Yuan Xiao

http://evil.example.com/blah

Safe Browsing Approach

Is “evil.example.com/blah"

safe?

Are any of ["1a02...°, 'bb90...",
'7a9e...", ‘bac8...’] present?

>

Yes (“1a02)

Safe
Web A Unknown Browsing

Browser
Server

SIST - Yuan Xiao

http://evil.example.com/blah

Safe Browsing Approach

Is “evil.example.com/blah"

safe?

Are any of ["1a02...°, 'bb90...",
'7a9e...", ‘bac8...’] present?

>

Yes (“1a02’)

Safe
Web A Unknown Browsing

Browser
Server

What are the unsafe hashes with the prefix?

SIST - Yuan Xiao

http://evil.example.com/blah

Safe Browsing Approach

Is “evil.example.com/blah"

safe?

Are any of ["1a02...°, 'bb90...",

'7a9e...", ‘bac8...’] present?
1 , Gl
Yes (“1a02’)
Safe
Web A Unknown Browsing

Browser
Server

What are the unsafe hashes with the prefix ‘“1a02’ ?

[‘1a02....af, “1a02....23, ...]

Check for Exact Match

SIST - Yuan Xiao

http://evil.example.com/blah

Beyond Passwords

SIST - Yuan Xiao

30

What do Passwords Protect Against?

* A strong password can protect against:

* Password spray: Testing a weak password against large number of accounts

e Brute force: Testing multiple passwords from dictionary or other source
against a single account

* But do not protect against:
* Credential stuffing: Replaying passwords from a breach
* Phishing: Man-in-the-middle, credential interception
* Keystroke logging: Malware, sniffing

* Extortion: Blackmall, insider threat

Home Notify me Domain search Who's been pwned Passwords APl About Donate B PP

;--have | been pwned?

Check if your email address is in a data breach

771 13,080,233,673 115,769 228,884,627
pwned websites pwned accounts pastes paste accounts
Largest breaches Recently added breaches
= Collection #1 accounts wone MovieBoxPro accounts

Verifications.io accounts Piping Rock accounts

Multl-Factor Authentication

 Microsoft: "Based on our studies, your account IS

more than 99.9% less likely to be compromised
If you use MFA"

* How are accounts compromised In practice?

 Credential Stuffing — attackers try to log In

using purchased lists of usernames and ——
passwords oo
* Phishing — users are deceived Iinto entering

their password

SIST - Yuan Xiao

SMS-Based Two Factor

* Prevents attackers from logging in using

stolen credential by sending One Time
Code (OTC) to user B svs

* Now considered obsolete. Falls against: LG

verification code is:

. . . 635606. Please type
¢ Ph|Sh|ng SlteS this code in your app
to complete the
verification.

* SIM Swapping

* Soclal Engineering Attacks

SIST - Yuan Xiao

Time-based One-Time Passwords (TOTP)

! 829 170
?*ﬁi‘iﬁm / Authentlcator App . Passcode

e .:'..-l'-' l- | (Authy, Google Authenticator, etc.)
+ —_—) 829 170

Passcode

User's phone

(=K,

Shared OTP Secret Key,
issuer, period

Servers

Application Infrastructure Source: Twilio
SIST - Yuan Xiao 385

Duo Push Notifications

 Duo (or similar) Push Notifications prevent

doesn’t show a code — can’t be stolen
by an attacker

* Doesn't provide full-proof defense against
“push phishing”:

* User clicking Approve out of habit

* Real-Time Phishing Site attacks

SIST - Yuan Xiao

-

Are you logging in to Acme Corp?

@ Ann Arbor, MI, US

® 8:31AM
A harroway
Deny Approve

86

How to provide foolproof 2FA?

 Most secure solutions rely on
cryptographic operation
that's tied to the website
being visited by the user

 \We have fool-proof solutions

today: physical security
tokens and Passkeys

SIST - Yuan Xiao 87

Physical Tokens

e Each token has a public and
private key pair

* Private key cannot be
extracted from the device

 Pushing button signs a

challenge presented to the
device

SIST - Yuan Xiao 88

U2F Protocol 3

U2F Device Client
challenge
-«
challenge
< Lookup
kpub
Sign
with k.
priv
signature(challenge)
- / >
D'
S S
>
Check s
using kpub

SIST - Yuan Xiao

U2F Protocol G

U2F Device Client

Challenge is Bound to challenge
Website by Browser <

\

challenge, origin, ch | id

- Lookup
— _/ P
y pub
Sign C
with k_ .
priv
signature(c)
W_/ >
S C, s
> Check s
using k

pub

SIST - Yuan Xiao 90

FIDO2MVebAuthN

e UZ2F Protocol only allowed

hardware tokens to be
used as a second factor

e FIDO2 allows them to be

used as primary
authentication mechanism

* Allows authenticators —

beyond hardware ()/@)
7,

token (e.q., TouchlD)

:User Agent :Relying Party

Goes to relying
party's website

g

:Authenticator

SIST - Yuan Xiao

HTTP GET
Relying party's scriptl
A == i i ALLL S || running on the user agent
Lo - calls
: : - navigator.credentials.get
Clicks login button S Gotchallange with this data.
Chall
<. Ch allenge | i
Challenge + get credentials command +
requested credentials id (optional) -
P Authorization request (option'al)
: Authorized :
S e e et e e L L L L s >
-'-< Signed challenge
Signed challenge b-:- H
Logged in
... Loggedin i
" Logged in |
91

Pass Keys

e Technical Name: “Multi-
Device FIDO Credentials”

* Public/Private key pair that
IS synchronized across
devices (e.g., by Google or
Apple) and can be used
through WebAuthN API

Multi-device
FIDO credential

n.

FIDO
Credential

FIDO
Credential

o—
O

/

-+

Single-device
FIDO credential

SIST - Yuan Xiao

FIDO
Credential

FIDO
Credential

Figure 1: Multi-device vs. single-device credentials

Synced key

— Device-bound key

(optional extension)

Non-synced key

92

Building a Secure Web Application

SIST - Yuan Xiao

93

Many Steps Involved

Best Advice: Use a modern web framework — many security
precautions are built in today — but don't assumel!

Protect Against CSRF: Never depend on cookies to signal user
Intent! Use CORS Pre-Flight or CSRF Tokens.
Set cookies as sameSite and secure.

Protect Against XSS: Set a Content Security Policy and do
not use any Inline scripts. Use httpOnly cookies.

Protect Against SQL Injection: Use Parameterized SQL or
Object Relational Mapper (ORM)

Many More Steps Involved

Protect Against Data Breach: Use modern hashing algorithm like
BCRYPT and salt passwords

Protect Against Clickjacking: Set Content Security Policy that
prevents you from being shown in an IFRAME

Protect Against Malicious Third Parties: Use lframes, CSP, and
HTML5 Sandboxes

Protect Against Compromised Third Parties: Use Sub-Resource
Integrity Headers

Protect Against Credential Compromise and Phishing: Use U2F

