
CS 253 Cyber Security
Building Secure Web Apps

ShanghaiTech Univers i ty

SIST - Yuan Xiao 1

Admin

• Project 2 is released

• Spectre Attack (classical ver.) demo

• Code skeleton can be found on course website or Piazza
resources

• Submission on Gradescope (C code)

• Keep in mind that ONLY your LAST ACTIVE uploaded version
will be graded

• Deadline 11/15 (Sat) 23:59

SIST - Yuan Xiao 2

Cross-Site Request Forgery (CSRF)

SIST - Yuan Xiao 3

Cross-SiteRequestForgery(CSRF)

POST /transferattacker.com

$.post({url: “api.bank.com/account“, …})

api.bank.com

Cross-site request forgery (CSRF) attacks are a type of web exploit where a

website transmits unauthorized commands as a user that the server trusts

In a CSRF attack, a user is tricked into submitting an unintended (often unrealized)

web request to a website — generally takes advantage of session cookies

You need to actively build defenses into web apps to protect against CSRF attacks

SIST - Yuan Xiao 4

OptionsforPreventingCSRFAttacks

Do not trust cookies to indicate whether an authorized application

submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is

authentic (coming from a trusted page)

Three commonly used techniques to validate intent:

- Referer Header Validation

- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:

- sameSite Cookies
SIST - Yuan Xiao 5

- Referer Header Validation

- Secret Validation Token Javascript Requests

OptionsforPreventingCSRFAttacks

Do not trust cookies to indicate whether an authorized application

submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is

authentic (coming from a trusted page)

ThreeTwo commonly used techniques to validate intent:

Form Submissions

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:

- sameSite Cookies
SIST - Yuan Xiao 6

OptionsforPreventingCSRFAttacks

Do not trust cookies to indicate whether an authorized application

submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is

Or, simply, don't send cookies to other domains:

- sameSite Cookies

- Referer Header Validation

- Secret Validation Token

authentic (coming from a trusted page)

ThreeTwo commonly used techniques to validate intent:

Form Submissions

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

What about GET Requests?

NEVER Change Application

State based on a GET request

SIST - Yuan Xiao 7

sameSiteCookies
Cookies that match the domain of the current site, i.e. what's currently displayed in

the browser's address bar, are referred to as first-party cookies

Cookies from domains other than the current site are third-party cookies

Cookies marked as sameSite are only sent if first party

Will not be sent for image,

form post if URL bar != origin of resource

SIST - Yuan Xiao 8

TwoModes
sameSite cookie setting can be in two modes:

Strict Mode (SameSite=Strict): The cookie will only be sent if the site for the

cookie matches the site currently shown in the browser's URL bar.

Problem: If you're on Site A, click on a link to Site B, then Site B won't

receive cookie because when you clicked on the link, URL bar said Site A (or,

if you simply typed the site into the URL bar

Lax Mode (SameSite=Lax): Allows cookie to be sent with these top-level

navigations.

SIST - Yuan Xiao 9

Set-Cookie: key=value; Secure; HttpOnly;

AProperlySecuredCookie

1. Don’t set domain, unless you need to (increases scope)

2. Add Necessary Security Restrictions

Only Allowed Over

HTTPS

SameSite=Lax;
Don’t Allow Javascript

Access through DOM
Prevent CSRF Attacks

SIST - Yuan Xiao 10

SQL Inject ion

SIST - Yuan Xiao 11

CommandInjection

The goal of command injection attacks is to execute an arbitrary command on the

system. Typically possible when a developer passes unsafe user data into a shell.

Example: head100 — simple program that cats first 100 lines of a program

int main(int argc, char **argv) {

char *cmd = malloc(strlen(argv[1]) + 100);

strcpy(cmd, “head -n 100 ”);

strcat(cmd, argv[1]);

system(cmd);

}

SIST - Yuan Xiao 12

CommandInjection

Source:

int main(int argc, char **argv) {

char *cmd = malloc(strlen(argv[1]) + 100);

strcpy(cmd, “head -n 100 ”);

strcat(cmd, argv[1]);

system(cmd);

}

Normal Input:

./head10 myfile.txt -> system(“head -n 100 myfile.txt”)

SIST - Yuan Xiao 13

CommandInjection

Source:

int main(int argc, char **argv) {

char *cmd = malloc(strlen(argv[1])

strcpy(cmd, “head -n 100 ”);

strcat(cmd, argv[1]);

system(cmd);

}

+ 100);

Adversarial Input:

./head10 “myfile.txt; rm -rf /home”

-> system(“head -n 100 myfile.txt; rm -rf /home”);

SIST - Yuan Xiao 14

SQLInjection

Last examples all focused on shell injection

Command injection oftentimes occurs when developers try to

build SQL queries that use user-provided data

Known as SQL injection

SIST - Yuan Xiao 15

SQLInjectionExample

$login = $_POST['login'];

$pass = $_POST['password'];

$sql = "SELECT id FROM users

WHERE username = '$login'

AND password = '$password'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

SIST - Yuan Xiao 16

Non-MaliciousInput
$u = $_POST['login’]; // zakir

$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

SIST - Yuan Xiao 17

Non-MaliciousInput
$u = $_POST['login’]; // zakir

$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = 'zakir' AND pwd = '123'”

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

SIST - Yuan Xiao 18

BadInput
$u = $_POST['login’]; // zakir

$pp = $_POST['password']; // 123'

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = 'zakir' AND pwd = '123''”

$rs = $db->executeQuery($sql);

// SQL Syntax Error

if $rs.count > 0 {

// success

}

SIST - Yuan Xiao 19

MaliciousInput
$u = $_POST['login']; // zakir'--

$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = 'zakir'-- AND pwd…”

$rs = $db->executeQuery($sql);

// (No Error)

if $rs.count > 0 {

// Success!

}

SIST - Yuan Xiao 20

NoUsernameNeeded!

$u = $_POST['login’]; // 'or 1=1 --

$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = ''or 1=1 -- AND pwd…”

$rs = $db->executeQuery($sql);

// (No Error)

if $rs.count > 0 {

// Success!

}

SIST - Yuan Xiao 21

CausingDamage

$u = $_POST[‘login’]; // '; DROP TABLE [users] --

$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = ''DROP TABLE [users]--”

$rs = $db->executeQuery($sql);

// No Error…(and no more users table)

if $rs.count > 0 {

// Success!

}

SIST - Yuan Xiao 22

MSSQLxp_cmdshell

Microsoft SQL server lets you run arbitrary system commands!

xp_cmdshell { 'command_string' } [, no_output]

“Spawns a Windows command shell and passes in a string for execution.

Any output is returned as rows of text.”

SIST - Yuan Xiao 23

EscapingDatabaseServer

$u = $_POST['login']; // '; exec xp_cmdshell 'net user add usr pwd'--

$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = '';

exec xp_cmdshell 'net user add usr pwd123'-- "

$rs = $db->executeQuery($sql);

// No Error…(and with a resulting local system account)

if $rs.count > 0 {

// Success!

}

SIST - Yuan Xiao 24

PreventingSQLInjection

Never trust user input (particularly when constructing a command)

Never manually build SQL commands yourself!

There are tools for safely passing user input to databases:

• Parameterized (AKA Prepared) SQL

• ORM (Object Relational Mapper) -> uses Prepared SQL internally

SIST - Yuan Xiao 25

ParameterizedSQL

Parameterized SQL allows you to send query and arguments separately to server

sql = “INSERT INTO users(name, email) VALUES(?,?)”

cursor.execute(sql, ['Dan Boneh', ‘dabo@stanford.edu'])

Valuesaresenttoserver

separatelyfromcommand.

Librarydoesn’tneedtoescape

sql = "SELECT * FROM users WHERE email = ?"

cursor.execute(sql, [‘zakird@stanford.edu'])

Benefit 1: No need to escape untrusted data — server handles behind the scenes

Benefit 2: Parameterized queries are faster because server caches query plan

SIST - Yuan Xiao 26

ObjectRelationalMappers

Object Relational Mappers (ORM) provide an interface between native objects

and relational databases.

class User(DBObject):

id = Column(Integer, primary_key=True)

name = Column(String(255))

email = Column(String(255), unique=True)

if name == " main ":

users = User.query(email='zakird@stanford.edu').all()

session.add(User(email='dabo@stanford.edu', name='Dan Boneh'))

session.commit()

SIST - Yuan Xiao 27

Cross S ite Scr ipt ing (XSS)

SIST - Yuan Xiao 28

CommandInjection

Cross Site Scripting: Attack occurs when application takes untrusted data

and sends it to a web browser without proper validation or sanitization.

Command/SQLInjection

attacker’s malicious code is

executed on app’s server

CrossSiteScripting(XSS)

attacker’s malicious code is

executed on victim’s browser

Both due to mixing untrusted user content and code to be executed
SIST - Yuan Xiao 29

ContentSecurityPolicy(CSP)

You’re always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy is an HTTP header that servers can send that

declares which dynamic resources (e.g., Javascript) are allowed to execute

Good News: CSP eliminates XSS attacks by whitelisting the origins that are

trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the

implementation incorrect.

SIST - Yuan Xiao 30

ExampleCSP—Javascript

Policies are defined as a set of directives for where different types of

resources can be fetched. For example:

Content-Security-Policy: script-src 'self'

→ Javascript can only be loaded from the same domain as the page

→ No Javascript from any other origins will be executed

→ no inline <script></script> will be executed

SIST - Yuan Xiao 31

Cl ickjacking Attacks

SIST - Yuan Xiao 32

Clickjacking
Attacker uses a transparent frame to trick a user into clicking on a button or

link on another page when they were intending to click on the top level page.

https://www.invicti.com/

SIST - Yuan Xiao 33

Incorrectsolution:framebusting
if (top != self) { top.location = self.location; }

Easy for parent to intercept and block call to change URL of page
SIST - Yuan Xiao 34

CorrectSolution:CSP

SIST - Yuan Xiao 35

Sub-Resource Integr ity

SIST - Yuan Xiao 36

Third-PartyContentSafety

Question: how do you safely load an object from a third party service?

<script src="https://code.jquery.com/jquery-3.4.0.js"></script>

If code.jquery.com is compromised, your site is too!

SIST - Yuan Xiao 37

MaxCDNCompromise

2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where

BootstrapCDN runs. The credentials of the support engineer were not

properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

SIST - Yuan Xiao 38

Sub-ResourceIntegrity (SRI)

SRI allows you to specify expected hash of file being included

<script

src="https://code.jquery.com/jquery-3.4.0.min.js"

integrity="sha256-BJeo0qm959uMBGb65z40ejJYGSgR1fNKwOg="

/>

SIST - Yuan Xiao 39

Sub-ResourceIntegrity (SRI)

SIST - Yuan Xiao 40

EnforceSRIwithCSP

SIST - Yuan Xiao 41

Securely Using Cookies

SIST - Yuan Xiao 42

Cookieshavenointegrity

Users can change and delete cookie values

* Edit cookie database (FF: cookies.sqlite)

* Modify Cookie header (FF: TamperData extension)

Shopping cart software

Set-cookie: shopping-cart-total = 150 ($)

User edits cookie file (cookie poisoning):

Cookie: shopping-cart-total = 15 ($)

Similar problem with localStorage and hidden fields:

<INPUT TYPE=“hidden” NAME=price VALUE=“150”>

SIST - Yuan Xiao 43

SignCookiesif Data

SIST - Yuan Xiao 44

ProtectingCookies

Remember that you also need to limit the scope of when cookie

can be used:

Set-Cookie: id=a3fWa;

Expires=Wed, 21 Oct 2015 07:28:00 GMT;

sameSite=Strict;

Secure;

HttpOnly

SIST - Yuan Xiao 45

Authenticat ion and
Session Management

SIST - Yuan Xiao 46

SIST - Yuan Xiao 47

SIST - Yuan Xiao 48

SessionManagementToday
GET / HTTP/1.1

cookies: []

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

Create

Anonymous

Session ID

<html><h1>Welcome!</h1></html>

SIST - Yuan Xiao 49

SessionManagementToday
GET / HTTP/1.1

cookies: []

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

Create

Anonymous

Session ID

GET /loginform HTTP/1.1

cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

<html><form>…</form></html>

SIST - Yuan Xiao 50

SessionManagementToday
GET / HTTP/1.1

cookies: []

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

Create

Anonymous

Session ID

GET /loginform HTTP/1.1

cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

<html><form>…</form></html>

HTTP/1.0 200 OK

cookies: [session: e82a7b92]
username: zakir

password: stanford

POST /login HTTP/1.1

cookies: [session: e82a7b92]

Check

Credentials

+ Upgrade

Token

<html><h1>Login Success</h1></html>

SIST - Yuan Xiao 51

SessionManagementToday
GET / HTTP/1.1

cookies: []

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

Create

Anonymous

Session ID

GET /loginform HTTP/1.1

cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

HTTP/1.0 200 OK

cookies: [session: e82a7b92]

<html><form>…</form></html>

HTTP/1.0 200 OK

cookies: [session: e82a7b92]
username: zakir

password: stanford

POST /login HTTP/1.1

cookies: [session: e82a7b92]

Check

Credentials

+ Upgrade

Token

<html><h1>Login Success</h1></html>

HTTP/1.1GET /account

cookies: [session: e82a7b92] SIST - Yuan Xiao 52

SessionTokens

Session

Token

Pitfalls

SIST - Yuan Xiao 53

ImplementingLogout

SIST - Yuan Xiao 54

Howdoyoudeleteacookie?

Cookies can have expiration dates

Set-Cookie: sessionID=XYZ; Expires=<Date>

To delete a cookie, set expiration to the past:

Set-Cookie: sessionID=;

Expires=Thu, 01 Jan 1970 00:00:00 GMT

SIST - Yuan Xiao 55

AuthenticatingUsers
Plain Text Passwords (Terrible)

- Store the password and check match against user input

- Don’t trust anything that can provide you your password

Store Password Hash (Bad)

- Store SHA-1(pw) and check match against SHA-1(input)

- Weak against attacker who has hashed common passwords

Store Salted Hash (Better)

- Store (r, SHA-1(pw || r)) and check match against SHA-1(input || r)

- Prevents attackers from pre-computing password hashes

SIST - Yuan Xiao 56

AuthenticatingUsers

Plain Text Passwords (Terrible)

- Store the password and check match against

user input

- Don’t trust anything that can provide you

your password

Store Password Hash (Bad)

- Store SHA-1(pw) and check match against

SHA-1(input)

- Weak against attacker who has hashed

common passwords

SIST - Yuan Xiao 57

AuthenticatingUsers
Plain Text Passwords (Terrible)

- Store the password and check match against user input

- Don’t trust anything that can provide you your password

Store Password Hash (Bad)

- Store SHA-1(pw) and check match against SHA-1(input)

- Weak against attacker who has hashed common passwords

Store Salted Hash (Better)

- Store (r, Hash(pw||r)) and check against Hash(input||r)

- Prevents attackers from pre-computing password hashes

SIST - Yuan Xiao 58

AuthenticatingUsers

Store Salted Hash (Best)

- Store (r, H(pw || r)) and check match against H(input || r)

- Prevents attackers from pre-computing password hashes

Making sure to choose an H that’s expensive to compute:

SHA-512: 3,235 MH/s

SHA-3 (Keccak): 2,500 MH/s

BCrypt: 43,551 H/s

Use bcrypt and salt passwords if you’re storing passwords!

SIST - Yuan Xiao 59

PasswordRequirementDownfalls

Complexity (e.g., as measured by entropy) isn't necessarily strong — users

add complexity in predictable ways

Requiring users to regularly change passwords leads to weak passwords

Length is the most important factor for a secure password

SIST - Yuan Xiao 60

ModernPasswordRecommendations

• Minimum password length should be at least 8 characters

• Maximum password length should be at least 64 characters

• Do not allow unlimited length, to prevent denial-of-service

• Common gotcha: bcrypt has a max length of 72 ASCII characters

• Check passwords against known breach datasets

• Rate-limit authentication attempts

• Encourage/require use of a second factor

SIST - Yuan Xiao 61

DesigningLoginWorkflows

• Helpful error messages can leak information to attackers

• “Invalid User ID”

• “Invalid password for User X”

• “Login failed; account disabled”

• Correct response:

• “Login failed; invalid User ID or Password”

• Not only login — think about User Registration and Password Reset

SIST - Yuan Xiao 62

DesigningLoginWorkflows

• Helpful error messages can leak information to attackers

• “Invalid User ID”

• “Invalid password for User X” In general, error messages should not leak any

• Correct response:

• “Login failed; invalid User ID or Password”

• Not only login — think about User Registration and Password Reset

information about the state of a system• “Login failed; account disabled” (in the web or beyond)

SIST - Yuan Xiao 63

PreventingGuessing

• It’s your responsibility to also prevent attackers from guessing

passwords of your users:

• Limit the rate at which an attacker can make authentication

attempts, or delay incorrect attempts

• Track of IP addresses and limit the number of unsuccessful

attempts

• Temporarily lock user account after too many unsuccessful

attempts

SIST - Yuan Xiao 64

Phishing

SIST - Yuan Xiao 65

WhatdoPasswordsProtectAgainst?

• A strong password can protect against:

• Password spray: Testing a weak password against large number of accounts

• Brute force: Testing multiple passwords from dictionary or other source

against a single account

• But do not protect against:

• Credential stuffing: Replaying passwords from a breach

• Phishing: Man-in-the-middle, credential interception

• Keystroke logging: Malware, sniffing

• Extortion: Blackmail, insider threat

SIST - Yuan Xiao 66

Phishing
• Acting like a reputable entity to trick the user into divulging sensitive

information such as login credentials or account information

• Often easier than attacking the security of a system directly

• Just get the user to tell you their password

SIST - Yuan Xiao 67

InternationalizedDomainNames(IDN)

• Domain names consist of ASCII characters

• Hostnames containing Unicode characters are transcoded to subset of

ASCII consisting of letters, digits, and hyphens called punycode

• Allows registering domains with foreign characters!

• münchen.example.com → xn--mnchen-3ya.example.com

SIST - Yuan Xiao 68

IDNhomographattack

• Many Unicode characters are difficult to distinguish from common ASCII

characters

• аpple.com vs. apple.com

xn--pple-43d.com apple.com

SIST - Yuan Xiao 69

SIST - Yuan Xiao 70

GoogleSafeBrowsing

• Google maintains a list of

known malware and phishing

URLs — tries to protect user

• But, how do you let users look

up dangerous sites without
leaking all traffic to Google?

SIST - Yuan Xiao 71

Safe

Browsing

Server

SafeBrowsingApproach
Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

DB

Web

Browser

SIST - Yuan Xiao 72

Safe

Browsing

Server

SafeBrowsingApproach
Get Unsafe Hash Prefixes

Web

Browser

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

DB

Is “evil.example.com/blah"

safe?

SIST - Yuan Xiao 73

http://evil.example.com/blah

Safe

Browsing

Server

SafeBrowsingApproach
Get Unsafe Hash Prefixes

Web

Browser

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

DB

Is “evil.example.com/blah"

safe?

Calculate: combinations = [

H(“evil.example.com"),

H(“example.com"),

H(“evil.example.com/blah"),

H(“example.com/blah")

] = ['1a02…28', 'bb90…9f',

'7a9e…67', ‘bac8…fa']

SIST - Yuan Xiao 74

http://evil.example.com/blah
http://evil.example.com
http://example.com
http://evil.example.com/blah
http://example.com/blah

Safe

Browsing

Server

SafeBrowsingApproach
Get Unsafe Hash Prefixes

Web

Browser

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

DB

Is “evil.example.com/blah"

safe?

Are any of [‘1a02…’, 'bb90…',

'7a9e…', ‘bac8…’] present?

DB

SIST - Yuan Xiao 75

http://evil.example.com/blah

Safe

Browsing

Server

SafeBrowsingApproach
Get Unsafe Hash Prefixes

Web

Browser

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

DB

Is “evil.example.com/blah"

safe?

Are any of [‘1a02…’, 'bb90…',

'7a9e…', ‘bac8…’] present?

No DB

Safe!

SIST - Yuan Xiao 76

http://evil.example.com/blah

SafeBrowsingApproach
Is “evil.example.com/blah"

safe?

Are any of [‘1a02…’, 'bb90…',

'7a9e…', ‘bac8…’] present?

Yes (‘1a02’) DB

Web

Browser
Unknown

Safe

Browsing

Server

SIST - Yuan Xiao 77

http://evil.example.com/blah

SafeBrowsingApproach
Is “evil.example.com/blah"

safe?

Are any of [‘1a02…’, 'bb90…',

'7a9e…', ‘bac8…’] present?

Web

Browser
Unknown

Yes (‘1a02’) DB

What are the unsafe hashes with the prefix?

Safe

Browsing

Server

SIST - Yuan Xiao 78

http://evil.example.com/blah

Safe

Browsing

Server

SafeBrowsingApproach
Is “evil.example.com/blah"

safe?

Are any of [‘1a02…’, 'bb90…',

'7a9e…', ‘bac8…’] present?

Web

Browser
Unknown

Yes (‘1a02’) DB

What are the unsafe hashes with the prefix ‘1a02’ ?

[‘1a02….af’, ‘1a02….23’, …]

Check for Exact Match

SIST - Yuan Xiao 79

http://evil.example.com/blah

Beyond Passwords

SIST - Yuan Xiao 80

WhatdoPasswordsProtectAgainst?

• A strong password can protect against:

• Password spray: Testing a weak password against large number of accounts

• Brute force: Testing multiple passwords from dictionary or other source

against a single account

• But do not protect against:

• Credential stuffing: Replaying passwords from a breach

• Phishing: Man-in-the-middle, credential interception

• Keystroke logging: Malware, sniffing

• Extortion: Blackmail, insider threat

SIST - Yuan Xiao 81

SIST - Yuan Xiao 82

Multi-FactorAuthentication

• Microsoft: “Based on our studies, your account is

more than 99.9% less likely to be compromised
if you use MFA”

• How are accounts compromised in practice?

• Credential Stuffing — attackers try to log in

using purchased lists of usernames and

passwords

• Phishing — users are deceived into entering

their password

SIST - Yuan Xiao 83

SMS-BasedTwoFactor

• Prevents attackers from logging in using

stolen credential by sending One Time
Code (OTC) to user

• Now considered obsolete. Fails against:

• Phishing sites

• SIM Swapping

• Social Engineering Attacks

SIST - Yuan Xiao 84

Time-basedOne-TimePasswords(TOTP)

SIM Swapping

Source: Twilio
SIST - Yuan Xiao 85

DuoPushNotifications

• Duo (or similar) Push Notifications prevent

doesn’t show a code — can’t be stolen

by an attacker

• Doesn’t provide full-proof defense against

“push phishing”:

• User clicking Approve out of habit

• Real-Time Phishing Site attacks

SIST - Yuan Xiao 86

Howtoprovidefoolproof2FA?

• Most secure solutions rely on

cryptographic operation

that’s tied to the website

being visited by the user

• We have fool-proof solutions

today: physical security
tokens and Passkeys

SIST - Yuan Xiao 87

PhysicalTokens

• Each token has a public and

private key pair

• Private key cannot be

extracted from the device

• Pushing button signs a

challenge presented to the
device

SIST - Yuan Xiao 88

U2FProtocol

SIST - Yuan Xiao 89

U2FProtocol

Challenge is Bound to

Website by Browser

SIST - Yuan Xiao 90

FIDO2/WebAuthN

• U2F Protocol only allowed

hardware tokens to be

used as a second factor

• FIDO2 allows them to be

used as primary

authentication mechanism

• Allows authenticators

beyond hardware
token (e.g., TouchID)

SIST - Yuan Xiao 91

PassKeys

• Technical Name: “Multi-

Device FIDO Credentials”

• Public/Private key pair that

is synchronized across

devices (e.g., by Google or

Apple) and can be used

through WebAuthN API

SIST - Yuan Xiao 92

Bui lding a Secure Web Appl icat ion

SIST - Yuan Xiao 93

ManyStepsInvolved

Best Advice: Use a modern web framework — many security

precautions are built in today — but don't assume!

Protect Against CSRF: Never depend on cookies to signal user

intent! Use CORS Pre-Flight or CSRF Tokens.

Set cookies as sameSite and secure.

Protect Against XSS: Set a Content Security Policy and do

not use any inline scripts. Use httpOnly cookies.

Protect Against SQL Injection: Use Parameterized SQL or

Object Relational Mapper (ORM)

SIST - Yuan Xiao 94

ManyMoreStepsInvolved
Protect Against Data Breach: Use modern hashing algorithm like

BCRYPT and salt passwords

Protect Against Clickjacking: Set Content Security Policy that

prevents you from being shown in an IFRAME

Protect Against Malicious Third Parties: Use Iframes, CSP, and

HTML5 Sandboxes

Protect Against Compromised Third Parties: Use Sub-Resource

Integrity Headers

Protect Against Credential Compromise and Phishing: Use U2F

SIST - Yuan Xiao 95

