

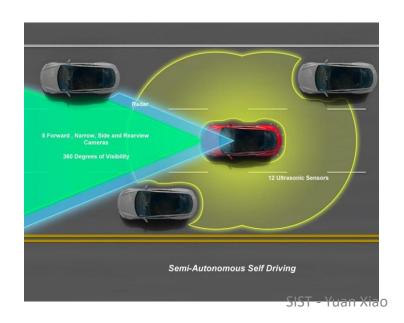
CS 253 Cyber Security Automotive & Adversarial Learning

ShanghaiTech University

Admin

- Project 3 is released. Deadline 12/17 (Wed) 23:59.
- Guide and requirements can be found on course website (PDF) or Piazza Resrouces (MD). MD works better because it is copyable.
- Don't worry if you cannot finish everything. Points are given by how much you have completed.
- Do NOT cheat by copying code of others! If found, you will receive 0 points for Project 3 and one grade down for the overall course grade.

In The News: Crashing of Self-Driving Car (Uber 2018)


- "Inadequate safety risk assessment procedures"
- The system is not trained to react to pedestrians crossing the street outside of designated crosswalks
- Vehicle operator distracted by personal cellphone

https://www.theverge.com/2019/11/19/20972584/uber -fault-self-driving-crash-ntsb-probable-cause

In The News: Crashing of Self-Driving Car (Tesla 2016)

 Car's cameras failed to pick out a white trailer against a bright sky in Florida

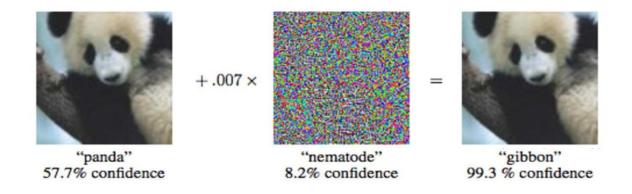
PRI SUL

Adversarial Examples to Attack Vision Sensors

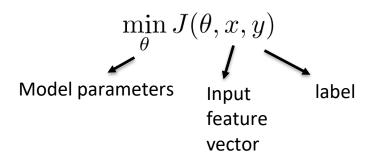
Perils of Stationary Assumption

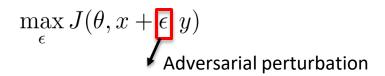
Traditional machine learning approaches assume

Training Data **II.I.**


Testing Data [1.1]

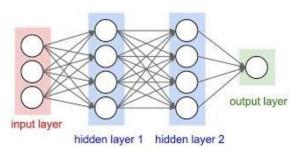
Autonomous Driving in Practice




Adversarial Examples

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *ICLR 2014*.

Adversarial Perturbation In ML



How to solve the adversary strategy

- Local search
- Combinatorial optimization
- Convex relaxation

Deep Neural Networks

Gradient Descent

Optimization Based Attack

Large probability of $x+\delta$ belonging to a target class t

Small perturbation

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = t$ $x + \delta \in [0, 1]^n$

minimize $\mathcal{D}(x,x+\delta)+c\cdot f(x+\delta)$ such that $x+\delta\in[0,1]^n$

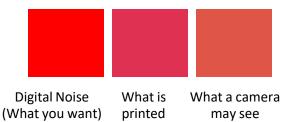
	Best Case				Average Case				Worst Case			
	MNIST		CIFAR		MNIST		CIFAR		MNIST		CIFAR	
	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob
Our L_0 JSMA-Z JSMA-F	8.5 20 17	100% 100% 100%	5.9 20 25	100% 100% 100%	16 56 45	100% 100% 100%	13 58 110	100% 100% 100%	33 180 100	100% 98% 100%	24 150 240	100% 100% 100%
Our L_2 Deepfool	$1.36 \\ 2.11$	100% 100%	$0.17 \\ 0.85$	100% 100%	1.76 -	100%	0.33	100%	2.60	100%	0.51 —	100%
Our L_{∞} Fast Gradient Sign Iterative Gradient Sign	0.13 0.22 0.14	100% 100% 100%	0.015	2 100% 99% 3 100%	0.16 0.26 0.19	100% 42% 100%	0.013 0.029 0.014	100% 51% 100%	0.23 - 0.26	100% 0% 100%	0.019 0.34 0.023	100% 1% 100%

Vulnerabilities of Perceptron Systems of Automobiles

However, What We Can See Everyday...

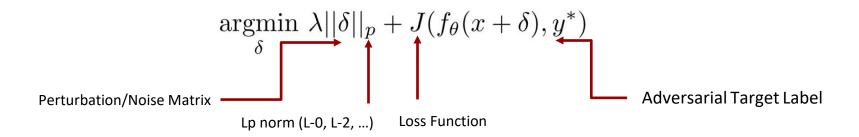
The Physical World Is... Messy

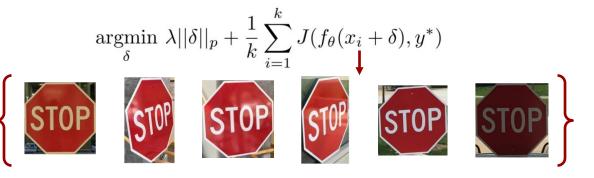
Varying Physical Conditions (Angle, Distance, Lighting, ...)



Physical Limits on Imperceptibility

Fabrication/Perception Error (Color Reproduction, etc.)




Background Modifications

Creating Robust Physical Adversarial Examples

Optimizing Spatial Constraints

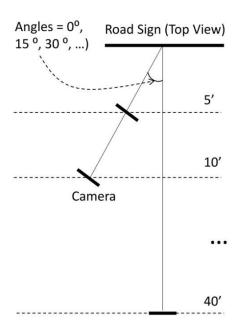
(Handling Limits on Imperceptibility)

$$\underset{\delta}{\operatorname{argmin}} \lambda || \widehat{M_{x}} \delta ||_{p} + \frac{1}{k} \sum_{i=1}^{k} J(f_{\theta}(x_{i} + \widehat{M_{x}} \cdot \delta), y^{*})$$

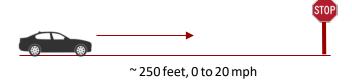
Camouflage Sticker

Mimic vandalism

"Hide in the
human psyche"



Handling Fabrication/Perception Errors


$$\underset{\delta}{\operatorname{argmin}} \ \lambda ||M_x \cdot \delta||_p + \frac{1}{k} \sum_{i=1}^k J(f_\theta(x_i + M_x \cdot \delta), y^*) + NPS(M_x \cdot \delta)$$

$$\underset{\beta \in \delta}{NPS(\delta)} = \sum_{\hat{p} \in \delta} \prod_{p' \in P} \frac{|\hat{p} - p'|}{|\hat{p} - p'|}$$
 P is a set of printable RGB triplets

How Can We Realistically Evaluate Attacks?

Lab Test (Stationary)

Field Test (Drive-By)

- Record video
- Sample frames every k frames
- Run sampled frames through DNN

Subtle Poster

Subtle Poster

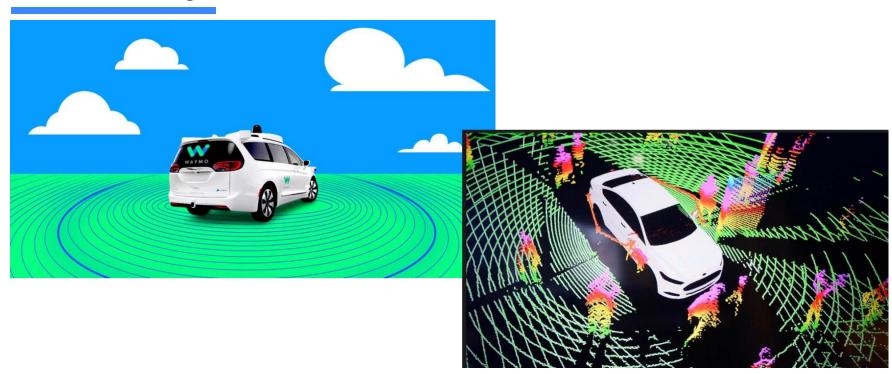
Camo Graffiti

Camo Art

Lab Test (Stationary)

Target Class: Speed Limit 45

Art Perturbation



Subtle Perturbation

Thinking more about Physical objects

Similar attack against LiDAR sensors

Numerous Defenses Proposed

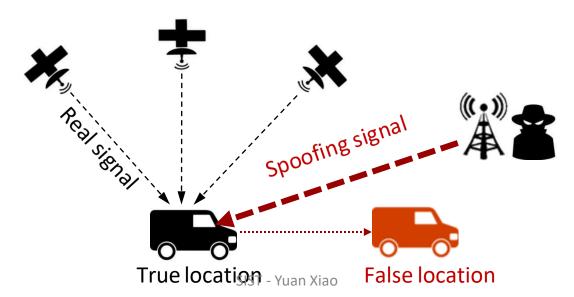
22

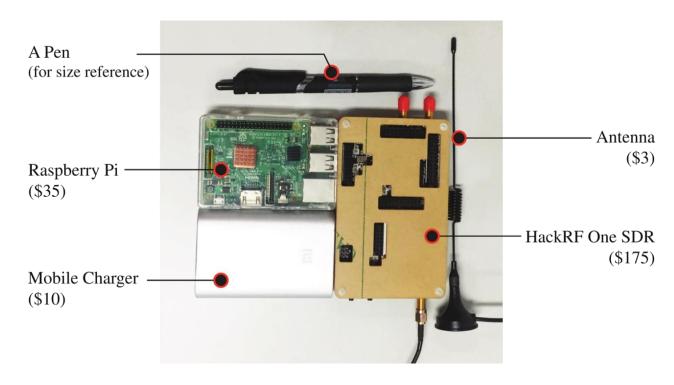
Attacking GPS Sensors

GPS Navigation Systems used by 1+Billion Users

GPS navigation is widely used by drivers around the world

Self-driving cars rely on GPS for navigation and on-road decisions


GPS Navigation Systems used by 1+Billion Users


GPS malfunction can lead to real-world consequences

Known Threat: GPS Spoofing

- Civilian GPS is vulnerable to spoofing attacks
 - A lack of authentication of signal source
- Take over victim GPS via brute-force jamming or smooth methods

Portable GPS Spoofer is Affordable (\$223)

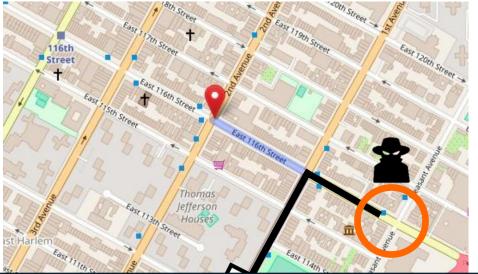
GPS Spoofing in Free Space (Air, Water)

In 2012, a drone was diverted in White Sands, New Mexico

In 2013, a yacht was diverted on the way from Monaco to Greece

Spoofing Road Navigation: More Challenging

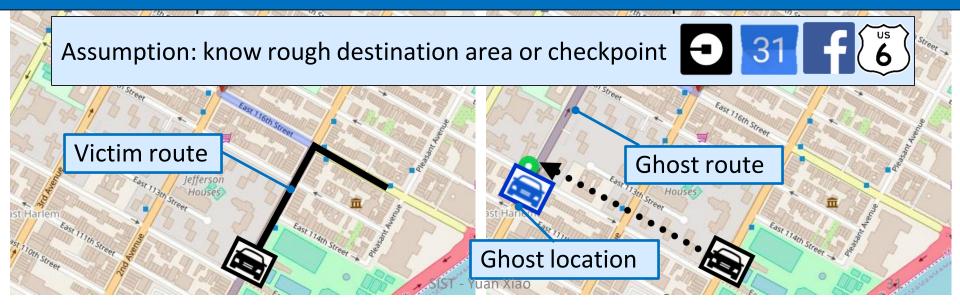
"Turn left" - physically impossible instruction! Easily alert human drivers

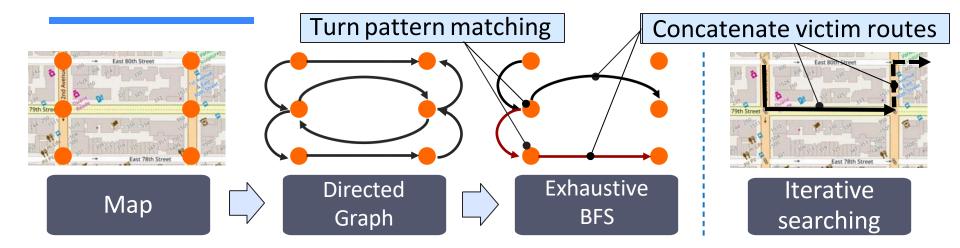

Making the Attack More Stealthy

Physical World

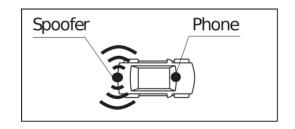
Digital Map

Core Idea: Calculate Spoofing Location and Timing


Physical World


Digital Map

Goal: find ghost route to mimic the shape of victim route


Route Searching Algorithm

Trace Driven Evaluation

- 600 real-world trips from the taxi datasets of New York City and Boston
- Deviating attack: 3,507 qualified victim routes per trip
- Endangering attack: 599 out of 600 (99.8%) contains wrong-way

Real-world Experiments

- Experiments with legal permission from local authority and IRB approval
 - After midnight, spoofing signals do not affect outside (-127.41 dBm)

Trigger instructions in time and divert to 2.1 & 2.5 km away

Can Human Users Detect the Attack?

- Let users drive in a simulator
 - Play truck drivers to "deliver packages" from location A to B
 - Advertise the study as a usability study, spoof locations in real time
 - Post-study interview to know why users can/cannot detect the attack

Experiment setup

Simulator view
SIST - Yuan Xiao

Google Street View

User Study Results

- Attack success rate: 95% (38 out of 40)
 - Two users detect it by cross-checking surrounding environment and the map to find inconsistency (Highway vs. local way)
- Users are more likely to use GPS in unfamiliar areas
 - Not enough pre-knowledge/time to check the inconsistency
 - Heavily rely on voice and turn-by-turn instructions
- Most users experienced GPS malfunction in real life
 - Unstable GPS signal does not alert users

Take-aways: Learning from Users

- It is feasible to manipulate road navigation systems
 - Advanced GPS spoofing strategies
 - Works even when humans are in the loop

- Defense ideas inspired by the user study
 - Cross-check data from digital and physical worlds
 - Computer vision-based localization
 - GPS-free localization & navigation

