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Maximum Likelithood Estimation of Gaussian and
Student’s ¢ GARCH: A Unified Penalty Method

Chenyu Gao

Abstract—The generalized autoregressive conditional het-
eroskedasticity (GARCH) model is widely used to characterize
time-varying conditional volatility in time series analysis. This pa-
per studies the maximum likelihood (ML) estimation of GARCH
model parameters under the assumption that the conditional
distribution of the innovations follows either a Gaussian or a
Student’s ¢ distribution. The estimation problems are challenging
due to the non-convex and recursive coupling nature of the model
parameters, which often leads to convergence issues in existing
ML estimation methods. Moreover, many existing approaches
fail to explicitly enforce the stationarity constraint, a desirable
property for GARCH models. To address these challenges, we
propose a unified penalty method for ML estimation of GARCH
models that effectively handles the parameter coupling and allows
flexible incorporation of stationarity constraints. We develop a
convergent estimation algorithm based on the block majorization-
minimization (BMM) framework, which efficiently exploits the
problem structure to update the model parameters. We prove
that the sequence generated by the BMM algorithm converges to
the set of Karush-Kuhn-Tucker points. Notably, for the Student’s
t case, we provide the first theoretical characterization of the
convexity of the negative conditional log-likelihood function with
respect to the shape parameter. Furthermore, our algorithm nat-
urally extends to M-estimation of GARCH, estimation of GARCH
variants, and joint estimation of GARCH and conditional mean
models. Numerical experiments on synthetic data demonstrate
that the proposed algorithm outperforms existing methods in
terms of parameter estimation accuracy and objective value. Its
effectiveness is further validated on real-world datasets from
applications including financial volatility modeling and radar
target detection.
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I. INTRODUCTION

N time series analysis, a time series is often viewed as a

collection of random variables ordered in time or as mani-
festations of a random process [2], [3]. Traditional models often
assume that the conditional volatility, that is, the conditional
standard deviation of a time series, remains constant over time.
However, empirical evidence from various real-world appli-
cations contradicts this assumption, revealing substantial vari-
ability. This discrepancy highlights the necessity of modeling
conditional volatility as non-constant. Engle [4] was the first
to highlight the non-constant nature of conditional volatility in
economic time series, leading him to propose the autoregres-
sive conditional heteroskedasticity (ARCH) model. This model
describes the volatility dynamics of a time series based on its
past residuals, defined as deviations from the conditional mean.
Subsequently, the generalized autoregressive conditional het-
eroskedasticity (GARCH) model was introduced by Bollerslev
[5]. The GARCH model extends the ARCH model by modeling
the conditional volatility as serially correlated, using both past
residuals and past volatility through an autoregressive mov-
ing average structure to forecast future volatility. As a general
framework, GARCH encompasses both the constant volatility
model and the ARCH model as special cases. Over time, numer-
ous variants of the GARCH model have been developed [6], [7],
[81, [9], [10]. For comprehensive reviews of GARCH models,
readers may refer to [11], [12], [13].

The GARCH model was originally developed in economet-
rics to analyze economic time series such as inflation [4], [5]
and financial time series such as asset returns [14]. It is par-
ticularly effective in capturing volatility clustering and accom-
modating heavy-tailed distributions [15]. In Fig. 1, we plot
the daily log-return residuals of HSBC Holdings plc (HSBC)
from the New York Stock Exchange, covering the period from
January Ist, 2022 to December 31st, 2024, along with the cor-
responding volatility envelopes estimated using the Student’s
t GARCH and integrated GARCH [6] models (the data to
the left of the vertical dotted line are used for model esti-
mation). We can observe the volatility clustering phenomenon
from the log-return residuals, where intervals of high volatil-
ity tend to cluster together, and low-volatility intervals also
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Fig. 1. The log-return residuals of HSBC and the estimated GARCH

models.

tend to group. The estimated GARCH and integrated GARCH
models effectively capture this phenomenon. Beyond econo-
metrics, GARCH has found extensive applications in various
domains, including signal processing and machine learning.
For example, in speech signal processing, GARCH is com-
monly employed for speech enhancement, as speech signals in
the short-time Fourier transform domain exhibit both volatility
clustering and heavy-tailed behavior [16], [17], [18], [19], [20],
[21]. In array signal processing, radar clutter can be described
using the GARCH process because of its volatility clustering
characteristics [22], [23]. Additionally, GARCH models have
been applied in several other areas, such as anomaly detection
[24], [25], [26], covariance recovery [27], biosignal process-
ing [28], image processing [29], [30], graph signal processing
[31], electricity price forecasting [32], [33], wind power predic-
tion [34], sentiment analysis [35], and traffic prediction [36],
[37], [38].

Despite its strong modeling capacity and wide range of ap-
plications, estimating the parameters of a GARCH model is
a highly challenging task. Methods such as the generalized
method of moments [39] and ordinary least squares estimation
[40] have been proposed. While these methods are easy to
implement, they are not asymptotically efficient and perform
poorly in small samples [41]. Maximum likelihood (ML) es-
timation remains the most widely used approach for GARCH
models and can be performed under various assumptions on
the conditional distribution of the innovations. The Gaussian
distribution assumption was first considered for ML estimation
in [5]. However, in fields such as finance, the observed residuals
often exhibit heavier tails than those that fit a Gaussian GARCH
model [42], [44]. Consequently, the Student’s ¢ distribution is
often regarded as a more suitable alternative, as it offers greater
flexibility in modeling tail behavior [14], [45], [46]. However,
solving ML estimation problems for GARCH parameters is in-
herently challenging. First, the estimation must respect certain
constraints. The positivity constraint ensures that the estimated
variance remains nonnegative, which is essential for the validity
of the volatility model. The stationarity constraint is typically
imposed to ensure that the volatility process remains stationary
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over time, a desirable property in GARCH modeling [4], [5],
[6]. In addition, the volatility dynamics are governed by recur-
sive equations that couple all model parameters, which makes
the optimization problem highly non-convex and difficult to
solve.

In the literature, various algorithms have been proposed for
the ML estimation of GARCH model parameters. Many of
these methods are implemented in publicly available software
packages, including the R packages tseries [47], fGarch [48],
and rugarch [49], the Python package arch [50], as well as
the commercial MATLAB toolbox Econometrics [51]. A quasi-
Newton method called Berndt-Hall-Hall-Hausman (BHHH)
was introduced in the seminal works on Gaussian GARCH [5]
and Student’s ¢ GARCH [14]. Other quasi-Newton methods,
such as the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algo-
rithm and the limited-memory BFGS (L-BFGS) algorithm, are
incorporated in software packages including the R packages
tseries, fGarch, and rugarch, with BFGS used in tseries and
L-BFGS implemented in fGarch and rugarch. However, these
quasi-Newton methods do not enforce the stationarity constraint
during estimation [52], [53], [54]. In addition to quasi-Newton
methods, sequential quadratic programming (SQP) and interior-
point method (IPM) have also been proposed to address the
constrained ML estimation problem. The SQP method is imple-
mented in the R package rugarch, the Python package arch, and
the MATLAB toolbox Econometrics, while the IPM method is
available only in Econometrics. Although SQP and IPM explic-
itly incorporate the stationarity constraints, they do not guaran-
tee that the iterates remain feasible at every iteration. To handle
the volatility equations, existing algorithms typically substitute
them into the objective function. However, the calculation of
the gradient of the conditional log-likelihood function remains
computationally intensive due to the recursive coupling of the
model parameters. This computational burden increases the risk
of round-off errors and may result in convergence failures for
many algorithms.

Recognizing these limitations, we propose a novel, effi-
cient, and provably convergent algorithm based on the block
majorization-minimization (BMM) framework [55] to solve the
ML estimation problems, under the assumption that the con-
ditional distribution of innovations follows either a Gaussian
or a Student’s ¢ distribution. It is important to emphasize that
the contribution of this work does not lie in introducing a new
GARCH model, but rather in developing efficient algorithms
for parameter estimation of existing GARCH models. Unlike
existing general-purpose algorithms, the proposed BMM algo-
rithm offers several key advantages. First, to address the recur-
sively coupled volatility equations inherent in GARCH models,
we introduce a unified penalty method for the ML estimation
problems. This method enables the volatility equations to be
handled in a decoupled manner, which significantly reduces
the computational complexity at each iteration. Second, the
BMM algorithm explicitly incorporates the stationarity con-
straint while ensuring that all iterates remain within the feasible
set. This property, often lacking in existing methods, is critical
for GARCH estimation as it guarantees the stationarity of the
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model. Third, the algorithm leverages the block structure of the
variables to simplify subproblem updates, which often admit
closed-form solutions. In addition, the algorithm guarantees
convergence to a stationary point.

The contributions of this paper are summarized as follows:

e We study the ML estimation problems for GARCH models
of arbitrary order, considering both Gaussian and Student’s
t conditional distributions of the innovations. We introduce
a unified penalty method for these estimation problems,
which effectively handles the recursively coupled volatility
equations while explicitly incorporating the stationarity
constraint.

e We propose a BMM algorithm that enables efficient vari-
able updates, often with closed-form solutions, while
ensuring that all iterates remain within the feasible
set.

e For the Student’s ¢ ML estimation problem, we provide the
first known theoretical characterization of the convexity
of the negative conditional log-likelihood function with
respect to the shape parameter.

e We show that the proposed penalty method naturally ex-
tends to M-estimation of GARCH, estimation of GARCH
model variants, and joint estimation of GARCH models
with conditional mean models.

o Numerical experiments on synthetic data show that the
proposed algorithm outperforms state-of-the-art methods
in GARCH estimation. Its effectiveness is further con-
firmed through evaluations on real-world datasets.

The remainder of this paper is organized as follows: Sec-
tion II introduces the GARCH model. In Section III, we pro-
vide a brief overview of the BMM algorithmic framework.
Section IV discusses the Gaussian ML estimation problem
for GARCH and the corresponding development of the BMM
algorithm. Section V focuses on the ML estimation of Stu-
dent’s ¢t GARCH. The convergence and complexity of the pro-
posed BMM algorithms are analyzed in Section VI. Section VII
discusses how the penalty method can be extended to other
GARCH-related estimation problems. The BMM algorithms
for GARCH estimation are compared numerically with existing
methods on both synthetic and real datasets in Section VIII.
Finally, we conclude in Section IX.

Notation. The following notation is adopted. Standard low-
ercase letters denote scalars. Boldface lowercase and uppercase
letters represent vectors and matrices, respectively. Uppercase
calligraphic letters stand for sets. 0 and 1 denote column vectors
where all entries are zero and one, respectively. I stands for the
identity matrix. E(x) and Var(z) denote the mean and variance
of the random variable z. || is the modulus of the scalar . [z];
denotes the i-th entry of the vector x. ||| denotes the 2-norm
of the vector z. X | denotes the transpose of X. A\pax(X) is
the maximum eigenvalue of X . For symmetric matrices X and
Y, X > Y denotes that X — Y is symmetric positive semi-
definite. Card(Z) denotes the size (cardinality) of the set Z. The
notation O(+) describes the asymptotic upper bound of the time
complexity with respect to the input size. Given a function f, we
use f’ and f”' to represent its first- and second-order derivatives,
respectively.
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II. THE GARCH MODEL

Consider a random process {y; }. The residual process {¢;}
is defined as

€t =Yt — Ht,

where p; = E (y; | Fi—1) is the conditional mean of y; with
Fi—1 denoting the information set available up to time ¢ — 1.
The residual ¢, is said to follow a GARCH process [5] if its
conditional variance, defined as h; = Var (¢; | F1—1), satisfies
the following autoregressive moving average equation:

q p
ht :w—ﬁ—Zaief,i—f-Zﬂjht,j, (1)

i=1 j=1
where w, g, ..., a4, and f1, .. ., B, are the model parameters.

Based on (1), the residual series {e;} can be represented as
€t — \/EtZt, (2)

where {z;} is a sequence of independent and identically dis-
tributed (i.i.d.) random variables with zero mean and unit vari-
ance. The model in (1) is referred to as GARCH(q, p) with ¢
and p specifying the order of the model (often both set to one
in practice). Denote & = [avy, . . ., aq]T and 3= [51,... ,BP]T.
When 3 = 0, the GARCH model reduces to the ARCH model
[4]; when a@ =3 =0, the GARCH model simplifies to the
constant variance model. Define

-
v= [aT,ﬁT} :
and
_ T2 2 T
c = [6t717-'-a6t7q7ht717'-';htfp] 3)
The equation (1) can be rewritten as
hh=w+v"e. )

To ensure the validity of the model, we require the following
regularity conditions:

w>0, >0, )

which are sufficient to guarantee the positivity of {h;}.

In GARCH modeling, the stationarity of the process {e;} is
a central concern for both theory and practice. In the seminal
work on GARCH [5], the following stationarity constraint is
considered

~T1<1.

This condition guarantees that the process {¢;} is strictly sta-
tionary and has a finite unconditional variance, which corre-
sponds to wide-sense stationarity. In certain scenarios, such as
financial time series, empirical evidence suggests that volatility
shocks tend to exhibit long-lasting effects [56], [57]. To model
such persistent behavior and generate long memory in the vari-
ance process, the following constraint is imposed

~T1=1.

In this case, although the process {¢;} remains strictly station-
ary, its unconditional variance becomes infinite. Due to this
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unit-root-like behavior in the variance dynamics, the resulting
model is referred to as the integrated GARCH model [6]. The
stationarity constraint is usually imposed during estimation to
ensure a stationary GARCH model, though some studies [54],
[58], [59] estimate parameters without it and check stationarity
afterward. In this paper, we consider both settings and denote
the constraint set on « uniformly by S.

III. BLOCK MAJORIZATION-MINIMIZATION ALGORITHM

In this section, we introduce a generic iterative optimization
framework known as block majorization-minimization (BMM)
[55]. Consider the following optimization problem:

min  f(z),

where the optimization variable x is partitioned into n blocks,
denoted by {x1,...,x,}, with each x; € X;. We assume that
the feasible set is a Cartesian product X' = H?Zl X, where each
A is closed and convex, and that the objective function f : X' —
R is continuous. In BMM, each variable block x; is updated in
a cyclic order by solving the following subproblem!':
min  fi (x5 2),

where f; is an upper-bound surrogate function of f with respect
to x;, and satisfies the following conditions:

fi(zz) = f(z),

filwsz) > f (2, ..

VeeX,i=1,...,n,

sy L 1, wi>£i+1a e 7271) 5
Ve, e Xj, Ve e X, i=1,...,n.

In practice, the surrogate function f; should approximate f
closely to promote fast convergence, while remaining simple
enough to ensure low per-iteration computational complexity

for updating ;. The BMM algorithm proceeds iteratively until
a convergence criterion is satisfied.

IV. ML ESTIMATION OF GAUSSIAN GARCH
A. The Gaussian ML Estimation Problem

This section considers the Gaussian GARCH model, where
the conditional distribution of z; in (2) is standard Gaussian.
The standard Gaussian distribution is defined as follows:

1 22
dgan (2¢) = \/7277 exp -5 )

€

Using the transformation z; = - |]—"t_1, where z; is a con-
ditional random variable, h; is defined in (4), and F;_ 1 =
{e1—¢,- -, €1, h1—p, ..., ho}, we obtain the negative condi-
tional log-likelihood function of ¢;, fort =1, ..., n, as follows:

- IOgLGau(Wv’ﬁEla ceey€n "FO)

. 1 €
= log ——dgam ( Fi —1>
t:rll Vhe " \Vhe |7

'In this paper, underlined letters indicate variables that are held fixed during
the update.
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n

1 €t
=5 | Zlogh; —1 “FE) ]
Z |:2 0og ht OgdGau ( /—ht |]:t 1):|

t=1

Then, we derive the ML estimation problem for the Gaussian
GARCH model as follows:

min

"1 1 1é
o Z{2log(2ﬂ)+2loght+]

2 hy

s. t. ht:w—i—'y—rct,t:l,...m
w>0,v>0,v€S, (6)

where

T

h=1[h1,...,h,] ,

and c¢; is defined in (3). All values of ¢ for t=1—
qs---,0,....,nand hy fort=1—p,...,0 are assumed to be
known. To handle the strict inequality constraint in (5), namely
w >0, we relax it to a closed constraint of the form w >
0, where 0. =0 + ¢ with ¢ being a small positive constant
(e.g., 1075). This relaxation is commonly adopted by existing
GARCH solvers, including the R packages tseries [47], fGarch
[48], and rugarch [49], the Python package arch [50], as well
as the Econometrics Toolbox [51] in MATLAB, to facilitate
the design and implementation of numerical algorithms. For
the stationarity constraint, when v "1 < 1 is considered, it is
similarly relaxed to v "1 < 1., where 1, =1 — ¢.

Problem (6) is a non-convex constrained optimization prob-
lem. A significant challenge of the problem arises from the fact
that the optimization variables are recursively coupled in the
equality constraints. A common approach in existing numer-
ical methods is to eliminate these constraints by recursively
substituting them into the objective function. However, this
substitution significantly increases computational complexity,
as it requires computing gradients via the chain rule, which not
only incurs a high computational cost but also amplifies nu-
merical errors and may ultimately lead to convergence failure.
To overcome this limitation, we reformulate the problem by
incorporating the equality constraints using a penalty function
approach. Based on this reformulation, we develop an efficient
algorithm under the BMM framework.

B. Problem Reformulation via Penalization
Applying the quadratic penalty function to the equality con-
straints, we obtain the following estimation problem

n

2
Z [IOght + :Tt + g (ht —w —’YTCt)Q
t=1 t

w>0s,v20,v€S, (N

min
w,v, h

s. t.

where 77 > 0 is a predefined penalty parameter. In contrast to
existing approaches that handle equality constraints by recur-
sive substitution into the objective, the proposed penalized for-
mulation enables a more efficient algorithm by leveraging the
specific structure of each variable block, an advantage naturally
supported by the BMM framework.
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C. Problem Solving

Based on the idea of BMM, we divide the optimization vari-
ables in (7) into three blocks, namely w, v, and h. By carefully
constructing surrogate functions, we derive closed-form update
rules for each variable block.

1) Solving the w-Block: Only the last term in the objective
of (7) involves variable w. Thus, the subproblem for w is

n
min Y (b —w - ngt)2
t=1
w > 0;.

s. t. ®)

Problem (8) is a convex quadratic program. It has a closed-form
solution given by

+ 1 - —~T
w —max{nZ(ht lgt)aos .

t=1

©))

2) Solving the ~v-Block: The subproblem regarding - is
n
min Z (ﬁt —Ww— ’YTQ)Q
v
t=1

s.t. v>0,v€S. (10)

Problem (10) is a convex quadratic program; however, it gen-
erally lacks a closed-form solution and must be solved nu-
merically. Although standard solvers are applicable, we aim
to derive a more efficient update by constructing appropriate
surrogate functions, guided by the BMM framework. To this
end, we first present a useful result.

Lemma 1 ([55]): Given ul > D, it follows that

' Dr<ux'xz+2zx' (D—-ul)z+z' (ul — D)z,

where the equality is attained when x = x.
Based on Lemma 1, for the objective of (10), we have

n

Sy —w—-7"e)

t=1

n n
o (Z ctc?) v 22 (hy —w)~ "¢, + const.
t=1 t=1

< u'yT’y — 2’7Tv + const.,

an

where

and const. represents a constant term that is irrelevant to ~y.
Taking the last line in (11) as the surrogate function, the sub-
problem for « is given by
min  uy' 'y —2v"v
v

s.t. v>0,~v€S. (12)

We solve this problem case by case.
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a) S is the (q + p)-dimensional Euclidean space
In this case, the solution for - is given in closed form as

fyj:max{o,ﬁ},forz‘:l,...,q+p. (13)
u

b)S:{'y|'yT1§18} andS:{'y|'yT1:1}

In these cases, the solutions to problem (12) can still be
computed in a finite number of steps, since the constraint set
defines a simplex-type projection.

Proposition 2: Define an index set as follows:

V={i|v;>0, i=1,...,q+p}.

The solution to problem (12) with § = {'y |vT1< 15} is
given by

u, Y U<l ieV
JEV
0, > %J <l.,ig¢gV
+ Jjev
v, = Vs .
d 0, Y, L>1iel.
_ jev
4 EQI '”7]_15 Vi .
V4 U
u q+zj)7Card(I€)’ Z ZJ 2 eyt ¢ IE’
Jjev
fori=1,...,q+ p, where

Vg n ngz% -l

v g+p—Card(Z.)

Igz{i

An efficient computational procedure is given in Algorithm 1.
The solution to problem (12) with S={~v|y'1=1} is

given by
{o, i€l
AN vj
K v; ngz T

>0, i:l,...,q—i—p}.

w ~ g+p—Card(Z)’ i ¢ 1,
fori=1,...,q+ p, where
vs
| Vg Z'gzi_l .
= S IR >0, i=1,..., .
{Z u+q+p—Card(I)* ! ¢rp

An efficient computational procedure is given in Algorithm 2.
Proof: Tt can be proved similarly to [[60], Lemma 1]. ®
3) Solving the h-Block: Let

q
2
ot:g—I—g a6, t=1,...,n.
i=1

The subproblem for h is

2
P

ht—Zﬁjht—j—Ot s
j=1

(14)

G .,

m}in ; log hy + T2

which is an unconstrained non-convex optimization problem.
Let the objective in (14) be denoted by ¢ Gay (R ). The optimal

solution 't is the first-order stationary point of ¢ qay. There-

fore, we solve for the zeros of the partial derivatives of pgay (h)

with respect to h; fort =1, ..., n, respectively, which leads to
a system of cubic equations. In this system, the optimization
variables h;, for t =1,...,n, are interdependent across the n
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Algorithm 1 Solving problem (12) with S = {7 |yT1< 15}

1if ), % < 1. then

2: vi =4 withi€V and v; =0 withi ¢ V
3: else

4: build a set Z., let i ¢ V be in the set Z.
5 start a loop

6: find the max element v; with i ¢ 7,

7 put ¢ into the set 7.

J

8: if 71 < q%—;% then

9: remove 7 from the set Z.
10: else
11 :Owithz’eI%

J _

12: v =5t q%;“ci;rd(z) with ¢ ¢ 7,
13: terminate the loop
14: end if
15: end if

Algorithm 2 Solving problem (12) with S = {v |y '1=1}

: build a set Z, let i ¢ V be in the set Z
. start a loop
: find the max element v; with ¢ ¢ 7
: put ¢ into the set 7
if %< (E—;% then
remove ¢ from the set 7
else

v =0witht €T

i Yier s
Vi =tk — q+;j ZC“d(I) with i ¢ T
terminate the loop

. end if

A A A S ol S

—_ =
—_ O

equations, which complicates the solution process. To address
this, we consider an alternative cubic system derived from a
suitable surrogate function for ¢gay, Which enables a more
efficient solution.

ul T
Define ﬁ -8 } and hy = [hy, ..., h—p] , for t=
1,...,n. Applymg Lemma 1 to the third term in the summation
of YGau, We have

- 2 . ~
(h:é - Ot) = h:@Tht - 2Oth:é + const.
AT T
< H@H h, hy + 2h, T + const., (15)
where const. represents a constant term and
. - 2
ro= (0B 0) B B[ e

By integrating the other two terms in ¢gay, We derive the
surrogate function @g,, as follows:

n 62 2
o () =Y {log bt 5+ 218" A ne+ nh;r"'t] ,
t=1

where the variables h;, for ¢ =1,...,n, become separable.
Now, we are prepared to solve the subproblems for h based on
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the surrogate function pg,,. By computing the partial deriva-
tive of pgay With respect to each hy, setting it to zero, and
multiplying both sides by h?, we obtain

(16)

12 L
UL QH h? + ﬁz [Tt+j]j+1 h? + hye — E? =0,
=0

where

_Jp+1 1<t<n—np,
e n—t+1, n—p<t<n.
The solution h; is the positive root of (16), required by the
domain of the logarithmic function, and can be computed using
the cubic formula. The result is stated below.
Proposition 3: For the cubic equation in (16), it has either
one or three positive roots. Besides,
1) If there is only one root k", it attains the minimum of
PGau 3
2) If there are three roots, either the least one htv
or the greatest one h; attains the minimum of

@Gaus and hence A is determined by hf =
i PGau (Rys- sy hey hyyqy ooy ).

arghte{mhivl?h?}ﬁpG (71 1150 Ry )

Proof: See Appendix A. ]

To summarize, the ML estimation of Gaussian GARCH using
BMM involves cyclically updating the three variables: w, -,
and h, as detailed in Sections IV-C1, IV-C2, and IV-C3. The
complete procedure is outlined in Algorithm 3.

V. ML ESTIMATION OF STUDENT’S ¢ GARCH
A. The Student’s t ML Estimation Problem

In many applications, the residual series {¢;} is often ob-
served to deviate from conditional normality, which calls for
considering the non-Gaussian noise [45]. In this paper, we also
consider the Student’s ¢t GARCH model [14], which captures
the heavy-tailed property in volatility modeling, making it more
robust to outliers and deviations from normality in data [46].
Compared to the Gaussian distribution, a Student’s t distri-
bution introduces an additional parameter, referred to as the
shape parameter (also known as the degrees of freedom), which
governs the tail heaviness of the distribution.

The probability density function of the Student’s ¢ distribu-
tion with shape parameter v is given by

0= (”)

where I' is the usual gamma function (ie., I'(z)=
Jo y* texp(—y)dy). When v — oo, the Student’s ¢
dlstrlbutlon will degenerate to the Gaussian distribution.
For the Student’s ¢ distribution, we have Var (z) =
v>2 Weusezr =
density function of z;:

%5 2 to obtain the following probability

dStu (Zt) -
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Let z; = \;;17 ’]—"t_l, where h; is defined in (4) and F;_1 =
{€1-¢,...,€—1,h1_p, ..., ho}. The negative conditional log-
likelihood function of €, for t =1,...,n, is given by

— log Lsty (w,'y, Vi€lyevy€n | fo)
)
3

The ML estimation problem for Student’s ¢t GARCH is given
in (17), where 2. = 2 — . In problem (17), the shape parameter
v is treated as an unknown to be jointly estimated along with the
GARCH parameters from the data. We impose an upper limit
[ for v, a common practice in existing numerical solvers for
Student’s ¢t GARCH estimation. Since a Student’s ¢ distribution
is much like a Gaussian distribution when v is relatively large
(for instance, v > 30), it is customary to set the parameter [ to
100. As in Section I'V-B, we further transform problem (17) into
a penalty form in (18).

. 1 €¢
:710g 7dS u <

n

D

t=1

1
[2 log hy — log dsty (

B. Problem Solving

In this section, we derive an algorithm to solve problem (18)
via BMM, where the optimization variables are divided into
four blocks: w, 7, h, and v.

1) Solving the w-Block and ~y-Block: The subproblems with
respect to w and ~ are identical to problems (8) and (10), re-
spectively, and can thus be solved using the methods presented
in Sections IV-C1 and IV-C2.

2) Solving the h-Block: The subproblem with respect to h
is given by

n

min E
h

2
{loght +(z+1)log (1/— 24 ;;)
t=1

t
5 (nlB - ot)z] , (19

where definitions of h;, B and o, are the same as those defined
in Section IV-C3. Problem (19) is an unconstrained non-convex
program. Denote the objective function as ¢si,. As in the
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Gaussian case, we majorize s, by the same tricks in (15) to
obtain a surrogate function Qg as follows:
n

D

t=1

2
[loght—&-(v—&- 1) log (u—Z—i—;t)

23

@Stu (h)
Nl zl%,.T T
2o e
where 7, is defined as in Section IV-C. Then, we compute the

first derivative of @sy,, with respect to each hy fort =1,...,n,
and set it equal to 0, leading to the following cubic equation

_ 2 P L2 €2
QH h§+n<2[rt+i]i+1+ﬁt QH V_t2> h?

2 p
€
+Qb:2§:VH&H+1>m

=0

UL

v
=0.
v—2

(20)

It can be verified that the positivity of the coefficients in (20) is
the same as that in (16). By Proposition 3, this cubic equation
can be resolved in the same manner.

3) Solving the v-Block: The v-block subproblem is

min — nvlog (v — 2) 4+ 2nlog T (Z)

2
1
—2nlogl’ (V;_)

s.t. 2. <v <,

—&-Z(I/+1)log(u—2+wt)
t=1

2

where w; = Z—’Q Denote the objective function as 7. The solu-
tion to the above problem is related to the zeros of 7”7, for which
we present the following result.
Theorem 4: For the function 77, the following relations hold
true:
1) Ifw €[3—+6,3++6]fort=1,...,n, 7 hasno ze-
ros on (2,00);
2) If wy € [0,37\/6) U (3+\/6,oo) fort=1,...,n, 7’
has at least one zero on (2, 00).
Proof: See Appendix B of the Supplementary Material. B
In Theorem 4, we have provided two sufficient conditions on
the zeros of 7”. However, these conditions on w; may be too
strict to satisfy in practice. In the following, based on the BMM
idea, we propose to solve v via optimizing a proper surrogate
function for 1.

L | v v v+1
' 3 |5 logm — Zlog (v — 2) +1 1“(7>—1 r
by {2 ogm — 5 log (v —2) +logl' (3 ) — log < >
sit. hh=w+~'e,t=1,....n

1 v+1 €
“logh log (v—2+ %
p ) TastT Og(” +ht)]

w>0,v20,v€S, 2. <v<li (17)
. & v v+1 €2 n T 12
min Z —vlog (v —2)+2logT <7)—2logf +loghi+(v+1)log (v —2+ =) += (ht —w— ct)
w,vy,h,v Py 2 ht 2
s. t. w>0.,v>0,v€S, 2. <v<lI (18)
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Algorithm 3 ML Estimation of Gaussian GARCH

Algorithm 4 ML Estimation of Student’s ¢ GARCH

I: Input: ¢, t=1—¢q,...,n),hy t=1—p,...
. Initialization: w, ~, h

: while stopping criteria not met do

update w with (9);

update ~ with (13) or Proposition 2;
update h with Proposition 3 applied to (16);
: end while

: Output: w, v

,0),m

It can be verified that the combination of the first two terms
in 7, ie, —nvlog(v —2) +2nlogl' (%), and the last two
terms, i.e, —2nlogT (“F1) + (v +1) >, log(v — 2 + wy),
are convex and concave in v, respectively. Therefore, one way to
obtain a convex surrogate function is to retain the first two terms
and linearize the last two at a given point v. This is precisely
the surrogate function employed in the classical expectation-
maximization (EM) algorithm for Student’s ¢ ML estimation
[61]. In this paper, we develop a more refined surrogate function
for 7", which offers a tighter approximation than that used in
EM. To achieve this, we decompose the last term in 7" into two
parts as follows:

n

Z(y+ 1)log (v — 2 4 wy)

t=1
- V—24 w
= 1)1 1 1)1 _—
n+ Do)+ 3+ 1) og (V251
(22)
where the first term is combined with the remaining terms in 77
to form

71 (v) = —nvlog(v —2) + 2nlog T’ (g)
—2nlogT (V;rl) +n+1)log(v+1), (23)

and the second term is defined as

Ty(v) = i(u +1)log (”2“‘“) .

P v+1

Lemma 5: The function 77 in (22) is strictly convex on
(2,00); the function 7% in (23) is concave on (2, 00).
Proof: See Appendix C of the Supplementary Material. B
Based on Lemma 5, we construct a linear surrogate function
for 15 as follows:

+ (r+1)log (V_V2+wt>} :

Therefore, a strictly convex surrogate for 7" is obtained as 7 =
Y1 + 7. One can verify that T is a tighter surrogate to 2" than
the surrogate function derived from EM since it preserves more
convexity of 7.

I: Input: ¢, t=1—¢q,...,n),hy t=1—p,...,0),n

2: Initialization: w, v, h, v

3: while stopping criteria not met do

4: update w with (9);

5: update ~ with (13) or Proposition 2;

6: update h with Proposition 3 applied to (20);
7: update v with the zero of (24);

8: end while

9: Output: w, v, v

_ Then, we update v on (2, 00) by finding the unique zero of
Y’(v), which is computed as

) , V
Pl abe 2y o)

(v) = —nlog(v = 2) = n-—— +n¢ ( 3

1
_mp(l/;r )+nlog(u+1)+n
S Z—?-l—wt S—wt

1 24
Jrt=21[0g< v+1 )JFV—Q—i—wJ7 249
whete  (2) = = J," SEY - SRSy s the

digamma function. Regarding 7", we have the following result.
Proposition 6: For the function T’ the following relations
hold true:
1) If w,=3 for all t=1,...,n, T’ has no zeros on
(2,00);
2) If there exists w; # 3 for t =1,...,n, T’ has a unique
zero on (2,00).
Proof: See Appendix D of the Supplementary Material. B
The first case in Proposition 6 can hardly arise in practice.
Therefore, we focus only on the second case, i.e., the update
vT can be chosen as the only stationary point of 7(v/). Finally,
considering 2. < v <, one can obtain v by applying a one-
dimensional search method, e.g., Brent’s method [62, Chapter
4] on the surrogate function 7 (v).
We summarize the overall BMM algorithm for solving the
Student’s ¢ ML estimation problem in Algorithm 4.

VI. CONVERGENCE AND COMPLEXITY ANALYSIS

A. Convergence Properties

The convergence of Algorithms 3 and 4 can be established
based on the generic proof in [63]. Since all the variable updates
in Algorithms 3 and 4 have unique solutions, it can be shown
that the sequence (w, 7, h) generated by Algorithm 3 converges
to the set of Karush-Kuhn-Tucker points of problem (7), and
the sequence (w,~y, h, ) generated by Algorithm 4 converges
to the set of Karush-Kuhn-Tucker points of problem (18). Since
Algorithms 3 and 4 both utilize the BMM framework, they
can benefit from some “off-the-shelf” accelerators to enhance
algorithm convergence, such as the squared iterative method
(SQUAREM) [64]. SQUAREM treats each iteration of an EM
algorithm as a mapping function. The SQUAREM then employs
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an approximated Newton’s method to find the fixed point of
this mapping, which allows it to attain superlinear convergence.
SQUAREM only requires the EM updating map, so it can be
readily extended to any EM-type algorithm. That is to say,
SQUAREM can be applied to any BMM algorithm, including
Algorithm 3 and Algorithm 4. Interested readers may refer to
[64] to see why it works.

B. Computational Complexity

We analyze the per-iteration computational complexity of
Algorithm 3 and Algorithm 4. For Algorithm 3, we up-
date w by (9) with complexity O (n(q + p)). In the update
Of v Since Z?:l Hgt||2 Z )‘max ( ;;1 thgr)’ we apprOXi_
mate w as y_,_; || ;|| with the computational complexity be-
ing O (n(q+p)); the time complexity for computing v is
O (q + p). If the stationary constraint is not considered, ~y can
be updated with (13) in time complexity O (n(q + p)). Hence,
the total time complexity is O (n(¢+ p)). If the constraint
set S is given by either {v|~v"1< 1.} or {v|~v"1=1},
then in the worst case we need to check g + p elements to
determine whether they belong to the set Z. or Z, respectively.
The complexity for updating v is O ((¢ + p)?). Hence, the
total time complexity is O (n(q + p) + (¢ + p)?). For updating
h, the complexity of computing the coefficients of each cubic
equation in (16) is O(q + p), and solving each cubic equation
by the cubic formula costs O(1). Since there are n equations,
the total complexity of solving the cubic system of equations
is O (n(q+ p)). For Algorithm 4, the time complexities for
computing the w, v, and h blocks are identical to those in
Algorithm 3. For updating v, we need to take O (n) to obtain
Y’ in (24). Then, if we choose Brent’s method to solve the
v-block, it takes O (log2 17625) steps to find the zero, where
0 is the error tolerance. Hence, the total time complexity is
O (n +logy =2).

VII. EXTENSIONS
A. M-Estimation

In the previous sections, we have demonstrated how the
proposed unified penalty method can be applied to the ML esti-
mation of GARCH models, using Gaussian and Student’s ¢ dis-
tributions as illustrative examples. It is worth noting that our ap-
proach is also applicable to other conditional distributions, such
as the generalized error distribution [7] and the generalized hy-
perbolic distribution [65]. All the aforementioned ML estima-
tion procedures aim to maximize the conditional log-likelihood
function. In more general settings, maximum likelihood-type
estimation, commonly referred to as M-estimation, is widely
adopted for GARCH models [42], [43], [66], [67]. This frame-
work is particularly appealing because it allows the use of robust
loss functions such as the Huber loss [66], which reduce the
influence of outliers and lead to robust parameter estimates. The
general M-estimation objective takes the form

7))

n

1 €
,1 h v
2[2 o8 t+p( ;-

t=1
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where p denotes a user-defined loss function. Here, Vhe rep-
resents a time-varying dispersion parameter, which can be the
conditional volatility when second-order moments exist, and
more generally serves as a conditional scale parameter in heavy-
tailed settings [68], [69], [70], [71]. The M-estimation frame-
work encompasses a wide range of GARCH estimation models.
For example, when p(z) = 17, the objective corresponds to
the Gaussian ML estimation loss in (6); when p(z) = ||, it
corresponds to the Laplace ML estimation loss; when p(z) =
1221 (|z| < k) + (k|z| — 3k%) I(|z| > k) with I the indicator
function and k a constant, it becomes the Huber loss. The pro-
posed penalty method is applicable to solving this generalized
formulation.

Remark 7 (On quasi-ML estimation of GARCH): Quasi-
ML estimation frequently appears in the GARCH literature
[72], [73], [74]. It involves estimating model parameters under
an assumed conditional distribution that differs from the true
distribution of the innovations, and the resulting objective is
referred to as a quasi-likelihood function. When the assumed
distribution matches the true one, the quasi-ML estimation re-
duces to the ML estimation. Both ML and quasi-ML estimation
fall within the broader class of M-estimation. Given that the
assumed distribution is generally misspecified, it is crucial to
study the statistical properties of the resulting estimators under
model misspecification. Accordingly, much of the existing work
has focused on theoretical analysis, establishing conditions un-
der which quasi-ML estimators are consistent and asymptot-
ically normal [73]. Although this paper primarily focuses on
ML estimation, the proposed method is also directly applicable
to estimation procedures based on quasi-likelihood functions.

B. Estimation of GARCH Variants

Although this paper focuses on the ML estimation of standard
GARCH and integrated GARCH models, the proposed penalty
method for decoupling the volatility equations can also be ex-
tended to other GARCH variants. In particular, it is applicable
to asymmetric GARCH models [75], which are designed to
capture the leverage effect in financial time series by allow-
ing positive and negative shocks to have different impacts on
volatility. Examples include the exponential GARCH model
[7], the threshold GARCH model [8] (or GJR-GARCH [9]),
and the asymmetric power ARCH model [10]. Besides, the
method is also applicable to GARCH models with exogenous
variables in the generalized GARCH framework of Bollerslev
[5]. In Appendix E of the Supplementary Material, we illustrate
how the proposed method extends to the estimation of GARCH
variants.

C. Joint Estimation With a Conditional Mean Model

In many time series applications, it is common to jointly es-
timate a conditional mean model alongside a GARCH variance
model. The mean component may take various forms, such as
a constant, a linear regression with exogenous variables, or an
autoregressive structure. Joint estimation enables the model to
capture both the mean dynamics and the time-varying volatility
of the data. In Appendix F of the Supplementary Material, we
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demonstrate the application of the BMM algorithm to joint
estimation with an autoregressive model.

VIII. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
BMM method through numerical experiments on both synthetic
and real-world datasets. Owing to space limitations, we focus
on the estimation performance of the vanilla GARCH model
[5]. The benchmark algorithms include BHHH [5], [14], BFGS
[47], L-BFGS [48], [49], SQP [49], [50], [51], and IPM [51]. All
these iterative algorithms are implemented in MATLAB with
random initialization to ensure a consistent and fair comparison.
Simulations are conducted on a machine equipped with a 3.3
GHz Intel Xeon W CPU.

A. Synthetic Data

1) Specification of GARCH Models:
GARCH models as follows:

e Gaussian GARCH(2, 3) with parameters w* = 0.01, a* =

[0.1,0.3]T, B* =1[0.2,0.29,0.1] T;
e Student’s ¢ GARCH(1,1) with parameters w* =0.01,
a* =04, 8" =0.59, v* =4.

2) Performance Metrics: Let x* denote the ground truth.
Consider m Monte Carlo simulations, where the estimate from
the i-th experiment, ¢ =1,...,m, is denoted by &;. The esti-
mation accuracy of parameters is measured based on the root
mean squared error (RMSE), defined as

We consider two

1 m
RMSE(z) = , | - > & — 2|
=1

The variance of the estimator is measured by the standard error
(SE), which is given by

2
m

SE(x) = %Z & — %ij
j=1

i=1

We report the number of cases in which the estimates violate the
stationarity constraint. Additionally, we also report the average
value of the negative conditional log-likelihood function (the
objective function in (6) for Gaussian GARCH and the objective
function in (17) for Student’s ¢t GARCH) and the average CPU
time in seconds.

3) Estimation Performance: We consider m = 500 simu-
lation experiments, where each experiment contains n = 50
samples and p pre-sample observations needed for GARCH
initialization. Since the quasi-Newton algorithms, including
BHHH, BFGS, and L-BFGS, frequently report estimates that
violate the constraints, we only include results from experi-
ments where all six algorithms observe the constraints. We
summarize the results for Gaussian GARCH(2, 3) in Table L
From Table I, we find that the proposed BMM algorithm can
attain the lowest RMSE for all the GARCH parameters and
also for h?. Moreover, the BMM algorithm achieves the lowest

2h* is computed from the GARCH model (4) based on w*, a*, and B*.
Since h* is different for different Monte Carlo iterations, we did not report
the SE for h.
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Fig. 2. Convergence of the objective value from six different methods.

average log-likelihood value and average CPU time among all
methods. In Fig. 2, we depict the average log-likelihood value
versus CPU time for all six algorithms. It can be observed that
the BMM method achieves a faster convergence speed with
monotonic convergence behavior. The comparison results for
the Student’s ¢ GARCH(1, 1) model are reported in Table II.
Similar to the Gaussian case, the proposed BMM algorithm
achieves the lowest RMSE, objective values, and CPU time
compared to existing methods.

B. Real Data

1) Log-Return Modeling in Finance: In this section, we
examine the estimation performance of the BMM algorithm
for GARCH estimation based on real stock market data. We
select the daily log-returns of HSBC Holdings plc (HSBC)
from the New York Stock Exchange, spanning from January
Ist, 2022, to December 31st, 2022, which comprise a total
of 251 observations. We remove the mean of this time series
using its sample mean estimate to obtain the residual series
{e+}. We split the first 201 observations to train both the Gaus-
sian and Student’s ¢t GARCH models, and the last 50 obser-
vations are used to test the forecasting performance. For the
model order selection, since low-order GARCH models are
typically employed in practice, we choose from GARCH(0, 0),
GARCH(1,0), GARCH(1,1), GARCH(1,2), GARCH(2,0),
GARCH(2, 1), and GARCH(2, 2). We then utilize the Bayesian
information criterion (BIC) to determine the specific orders ¢
and p. As reported in Table III, we observe that within the
Gaussian GARCH models, GARCH(1,1) and GARCH(2,1)
exhibit relatively lower BIC values. A similar trend is observed
for the Student’s ¢ GARCH models, where GARCH(1, 1) and
GARCH(2, 1) provide superior performance. Furthermore, the
Student’s t GARCH models generally exhibit smaller BIC val-
ues than the Gaussian GARCH models, suggesting that Stu-
dent’s t GARCH provides a better fit for stock market data. Ac-
cordingly, we select the Student’s ¢t GARCH(2, 1) for volatility
prediction, and the results are shown in Fig. 1.

The goodness of the models is tested based on their forecast-
ing performance. However, the true volatility is unobservable,
which means that the accuracy of volatility forecasting cannot
be directly measured in practice. Hence, it is essential to estab-
lish a metric to evaluate the volatility forecasting performance.
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TABLE I
PERFORMANCE COMPARISONS OF SIX METHODS FOR GAUSSIAN GARCH(2, 3)

RMSE(w) RMSE(a) RMSE(B) . . oo -
Method (SE(w)) (SE(a)) (SE(3)) RMSE(h)  Constraint Violation — Log-likelihood ~ CPU Time (s)
0.0424 0.1300 0.1389
BHHH (0.0094) (0.0045) (0.0047) 0.9823 282/500 10.3007 0.1849
0.3391 0.0959 0.1091
BFGS (0.0109) (0.0056) (0.0049) 0.7087 277/500 10.8624 0.2192
0.0748 0.0964 0.1100
L-BFGS (0.0029) (0.0067) (0.0056) 0.8774 120/500 10.3158 0.0894
0.0831 0.1118 0.1315
SQP (0.0027) (0.0083) (0.0059) 0.7266 0/500 9.4549 0.2853
0.0424 0.0872 0.1131
IPM (0.0011) (0.0038) (0.0027) 0.5799 0/500 9.3266 0.1308
0.0141 0.0954 0.1077
BMM (prop.) (0.0059) (0.0042) (0.0057) 0.5585 0/500 8.8040 0.0850
TABLE II
PERFORMANCE COMPARISONS OF SIX METHODS FOR STUDENT’S ¢ GARCH(1, 1)
RMSE(w RMSE(a RMSE RMSE(v . L oo .
Method (SE(w())) (SE(a())) (SE(ﬁ()ﬁ)) (SE(V())) RMSE(h) Constraint Violation — Log-likelihood ~ CPU Time (s)
0.5213 0.2105 0.2653 0.2381
BHHH (0.0667) (0.0447) (0.0526) (0.2202) 3.5912 419/500 49.2463 0.2085
0.4593 0.2579 0.2884 0.2054
BFGS (0.0817) (0.0522) (0.0837) (1.4983) 2.4222 362/500 47.9485 0.2111
0.3571 0.2441 0.2612 0.1120
L-BFGS (0.0566) (0.0572) (0.0694) (0.2636) 2.5306 346,/500 48.0595 0.1935
0.4445 0.2385 0.2811 0.2189
SQP (0.0561) (0.0363) (0.0409) (1.8173) 2.7815 0/500 49.9377 0.1708
0.3197 0.2163 0.2315 0.6303
IPM (0.0451) (0.0141) (0.0260) (4.2433) 1.9352 0/500 49.0684 0.1664
0.2445 0.2126 0.2110 0.1102
BMM (prop.) (0.0447) (0.0459) (0.0437) (0.6340) 1.7234 0/500 47.1058 0.1625
TABLE III
THE BIC OF GAUSSIAN AND STUDENT’S ¢ GARCH MODELS FOR HSBC
Gaussian GARCH l Student’s ¢t GARCH
(g,p) BIC (a,p) BIC (a,p) BIC (a,p) BIC
(0,0) —941.4370 (0,0) —965.8462
(1,0) —943.0760  (2,0) —939.0760 (1,0) —964.4285 (2,0) —956.0430
(1,1) —987.1239 (2,1) —948.9591 | (1,1) —1015.4725 (2,1) —1027.3791
(1,2) —934.4087 (2, —943.6632 (1,2) —948.9946 (2,2) —989.5558

Given the observed residuals {¢;} in the test data and the
corresponding predicted conditional standard deviation {ht ,

h
Since z; is defined as an i.i.d. random variable, we can employ

the Ljung-Box Q-test as a benchmark to measure the autocor-
relation of the standardized residuals {Z:} [2], [76]. The Ljung-
Box (Q-test statistic for lag ¢ is defined as follows:

0% (k)
n—=k’

we can obtain the standardized residual series {2t ’ 2=

0
QU =n(n+2))
k=1

where n denotes the sample size, and
_ Z?:kdrl (ét - %E?:l 732’) (ét*k - %E?:l 22’)
- N 02

et (B — 5 i &)

o(k)

is the sample autocorrelation coefficient of series {Z; } at lags k.
The volatility we forecast is more accurate if the ()-test statistic
has a lower value.

Besides, the accuracy of the forecasted volatility can also
be evaluated by the skewness and kurtosis of the standardized
residual series {Z;}. Specifically, if the measured skewness and
kurtosis are close to the theoretical values under the specific
conditional distribution assumptions on the standardized resid-
ual series {z;}, the forecasted volatility is considered accu-
rate. Since the skewness and kurtosis of standardized residu-
als differ between Gaussian and Student’s ¢ distributions, to
directly compare the relative performance of Gaussian GARCH
and Student’s ¢t GARCH models, we introduce the Rosenblatt
transformation [77], [78], which transforms any time series
to a Gaussian series with zero mean and unit variance. We
apply the Rosenblatt transformation to transform the obtained
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TABLE IV

PERFORMANCE COMPARISONS OF SIX METHODS USING GAUSSIAN GARCH oN HSBC

Method GARCH(1,1) GARCH(2,1)
Log-likelihood ~ Q(20)  Skewness Kurtosis | Log-likelihood — Q(20)  Skewness Kurtosis
BHHH —456.1237 6.3281 0.3851 6.1643 —461.0942 5.7586 0.4987 6.5563
BFGS —451.2235 6.4127 0.3506 6.1831 —439.5896 6.4678 0.3458 6.3537
L-BFGS —445.8975 6.4451 0.3473 6.3025 —440.9587 6.4554 0.3493 6.3492
SQP —445.4572 6.4485 0.3468 6.3092 —437.0015 6.4830 0.3487 6.4003
IPM —437.4983 6.5006 0.3621 6.5320 —442.2206 6.6693 0.3419 6.5413
BMM (prop.) —501.5057 6.0364 0.1629 6.1011 —485.0711 4.3559 0.0480 6.2379

TABLE V

PERFORMANCE COMPARISONS OF SIX METHODS USING STUDENT’S ¢ GARCH oN HSBC

Method GARCH(1,1) GARCH(2,1)
Log-likelihood ~ @Q(20)  Skewness Kurtosis | Log-likelihood — @Q(20)  Skewness  Kurtosis
BHHH —461.8468 5.9545 0.1847 3.7984 —479.6861 6.4385 0.1107 2.9463
BFGS —444.9232 6.4245 0.1005 3.7421 —474.4392 6.1600 0.1436 3.4109
L-BFGS —444.9228 6.4245 0.1005 3.7420 —431.8533 6.5713 0.0924 3.6846
SQP —435.9413 6.4419 0.1680 4.5358 —424.9679 6.4872 0.2028 4.9519
IPM —434.9634 6.4306 0.1545 4.4693 —442.0838 6.6285 0.1369 4.3235
BMM (prop.) —520.9695 5.6841 0.0039 3.1216 —526.9228 5.3784 0.0115 3.1179

standardized residual series in Student’s ¢ GARCH into a Gaus-
sian i.i.d. series, which is analogous to the standardized resid-
uals from Gaussian GARCH models. Since Gaussian has a
skewness of 0 and a kurtosis of 3, models producing series
that closely match these skewness and kurtosis values tend to
perform better.

The volatility forecasting performance from different esti-
mation methods on the Gaussian GARCH models is shown
in Table IV, and the performance for the Student’s ¢ GARCH
models is presented in Table V (we chose ¢ = 20 in the Ljung-
Box test statistics as suggested by [79]). The proposed BMM
method achieves lower objective function values than existing
methods for both GARCH models, indicating a better fit to
the data. Additionally, the BMM method demonstrates lower
Ljung-Box ()-test statistics and better skewness and kurtosis
values among all the models.

2) Target Detection in Radar: In radar target detection, the
goal is to identify the desired targets from the received signals,
which are often affected by unwanted clutter that obscures
detection. Hence, accurately modeling the clutter is crucial for
increasing the detection accuracy. Since the clutter observed in
real-world data typically exhibits heavy-tailedness and volatil-
ity clustering, we can model it as a time series using a complex
GARCH model [80]. In [22], [23], the Gaussian GARCH model
was adopted for clutter modeling, while in this paper, we also
consider the Student’s ¢t GARCH. A complex GARCH process
€; in (1) is specified as [81]

€ = \/ES%;

where the conditional variance h; is defined as

q p
hy =w + Zai les—i|* + Zﬂjht—jv
i=1 =1

and {z:} is a sequence of standardized circularly symmetric
i.i.d. random variables. In the experiment, the clutter €; is mod-
eled using the McMaster University IPIX radar dataset [82],
where it has a conditional mean of zero. Specifically, we use the
first 2048 samples from the file “19931107_141630_starea.cdf”
in the IPIX radar dataset. The IPIX radar provides polarimetric
information; the data shown corresponds to vertical polariza-
tion. We split the 2048 samples into two parts. The first 1024
samples are used as the training data. The last 1024 samples are
used to construct the test data, where a synthetic target signal,
denoted as e; is added onto the clutter €; at specific time points.
We estimate the GARCH models based on the training data.
Then, the estimated model is used to detect whether the test
data at each time point includes an echo signal from the target.
We model e; according to the Swerling I model, which assumes
it follows a circular Gaussian distribution with zero mean and
constant variance h. [83].

The detection procedure at time ¢ involves making decisions
on the received signal between these two hypotheses:

H()I
H1:

target is absent

target is present

where in the null hypothesis H, the received signal is assumed
to contain only the clutter ¢;; in the alternative hypothesis H,
the received signal additionally includes the target e; that we
aim to detect. Let y; denote the received signal. The decision
between Hy and H; is made using the Neyman-Pearson crite-
rion [84]:

_ Py | Hy) _ [ P(ye|er, Hi)Pe)dey 1
P(y: | Ho) P(y: | Ho) y
where A(y;) is called the likelihood ratio, P(- | -) denotes the

probability of the corresponding event, and (; is a nonnegative
threshold. We choose H; if the likelihood ratio A(y;) is larger

ty

Aye)
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Fig. 3.

than the threshold (;, and we fail to reject H, if the likelihood
ratio is smaller than (;.

In practice, we are often given a probability of false alarm
Px,, which is defined as the probability of declaring a received
signal under H; when it is actually under Hj. Then, we have

the following relation:
Pra = P (A(y:) > ¢ | Ho) - (25)

The value of (; can be calculated based on (25). When ¢; follows
a complex Gaussian GARCH model, A(y;) is calculated by

ha lye|? lye|?
Alye) =1/ - .
W) =\ 5, O ( R
Since P (A(y:) > ¢ | Ho) = P (log A(y:) > log (¢ | Hy), we
have
1 hi yel® 1wl
Pp=P|=1 — 1 H
o (2 Og<ht+h5)+ he Tyt he 0g Gt | Ho
1 hy(hy + he) ¢ P
-y - 1
|yt|>\/2 W Og(ht+he 0
1 hy(hy + he) ¢ 2
-y - 1
|€t|>\/2 he Og<ht+he

Since the modulus of a circular Gaussian random variable |e;|
is a Rayleigh random variable, we can compute (; in a closed
form. However, when ¢, follows a complex Student’s t GARCH
model, a closed-form solution for (; does not exist. In practice,
for a given threshold (;, we can use the Monte Carlo method
(10% Monte Carlo iterations are used in the following calcula-
tion) to approximate the relation in (25) [85]:

10°
1

Pfa = W Z I{A(yt)>Ct\Ho}(ei)a
=1

(26)
where I 4(-) is the indicator function of set A, and €} denotes
the 7-th Monte Carlo sample from ;. The approximation in (26)
can be run for multiple different ;. Therefore, for a given P,,
the value of (; can be approximately computed.

The real and imaginary parts of the radar clutter signal,

1.5 1.6

Time (s)

along with the estimated gaussian and student’s ¢ GARCH models.
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Fig. 4. Py versus SCR for the Gaussian and Student’s ¢ GARCH models.

In the following, we compare the performance of Gaussian
and Student’s t GARCH models on clutter modeling. In Fig. 3,
we demonstrate the clutter from the test data with the volatility
envelopes that are forecasted by Gaussian GARCH(1, 1) and
Student’s ¢ GARCH(1, 1) (orders of these models are deter-
mined based on BIC). We report the probability of detection
Py, defined as the probability of declaring a received signal
under H; when it is indeed under H;, under different val-
ues of signal-to-clutter ratio (SCR)? and P,. Fig. 4 illustrates
how Py changes with varying SCRs, while Fig. 5 presents the
relationship between Py and Pr,. From both figures, we can
observe that P4 increases with the increase in SCR or P, under
both GARCH models. Moreover, under the same SCR and P,
the Student’s £ GARCH model consistently demonstrates better
performance than the Gaussian GARCH model.

3SCR is defined as SCR =

log hf, where £ is the sample variance of €;
in the test data.
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IX. CONCLUSION

In this paper, we have studied the parameter estimation of
GARCH models under the Gaussian and Student’s ¢ assump-
tions. We have proposed a novel penalty method for the ML
estimation problems and have developed structure-aware block
majorization-minimization algorithms for problem resolution.
Compared with existing methods, our approach effectively ex-
ploits the structure of the ML estimation problems and avoids
the heavy computational overhead of volatility recursion con-
straints, which often increase the risk of round-off errors and
may cause convergence failures. Experiments on both synthetic
and real data have demonstrated that the proposed algorithm
achieves more accurate and efficient parameter estimation. Fur-
thermore, we have discussed how the developed methods can
be adapted to M-estimation of GARCH, estimation of GARCH
variants, and joint estimation of GARCH and conditional mean
models. Beyond GARCH, the proposed penalty approach for
enforcing recursive coupling constraints can also be extended to
ML estimation of stochastic volatility models, which we leave
for future research.

APPENDIX A
PROOF FOR PROPOSITION 3

Proof: We represent each cubic equation in (16) as
g(z) = a1z + asx® + asx + as =0,

where a1 >0, ag >0, a4 <0, and the sign of as is undeter-
mined. By Descartes’ rule of signs, the number of positive solu-
tions is related to the number of sign changes in the coefficients.
Hence,
e If ay >0, the signs change once, indicating the cubic
equation in (16) has a unique positive solution;
e Ifas < 0, there are three sign changes, indicating the cubic
equation in (16) has one or three positive solutions.
In summary, each cubic equation in (16) has either one or three
positive roots. Then, we prove that minimum points exist among
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the positive solutions by examining the monotonicity of g(x).
We have

g (x) = 3a12? + 2azx + az.

Since both a; and ag are positive, ¢’(x) cannot have only one
positive zero. Hence, we consider the following two possible
cases:

e If ¢/(x) has no positive zero, then since the coefficient
of order 2 is positive, ¢’(x) > 0, indicating that g(x) is a
monotonically increasing function for x > 0. Considering
lim, 0 g(z) = ag <0, the unique zero for g(z) is the
minimum point;

e If ¢’(x) has two positive zeros, then since the coefficient of
order 2 is positive, g(x) is increasing, decreasing, and then
increasing for = > 0. Considering lim, ¢ g(z) = a4 <0,
if g(z) has a unique zero, it is the minimum point; if g(z)
has three zeros, the minimum is either the smallest or the
largest zero.

|
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APPENDIX B
PROOF FOR THEOREM 4

Proof: We rewrite the objective function of problem (21) as Y'(v) = >}, 7;(v), where T1;(v) is defined as the log-
likelihood function for one sample with respect to the variable v:

1
Tt(u):—Vlog(u—2)+2log1"<;)—210gF<V—;>+(V+1)log(u—2+wt),
with w; > 0. Then, we have 77(v) = Y., 77 (v), where
+1 v+1
Tiw) = —log(v = 2) - —— + v (2) — v~ log (v — 2 S
1) =—tost-2) - s +u (5) - v (S0 ) Hlos v 2+ w +

We analyze the number of zeros of 7”(v) by examining those of 7} (v). We first characterize the behavior of 7/ (v) at the
two extremes of the domain of v, namely v — 2 and v — oo, which are given respectively by

lim Y(v)=— lim (log(y -2) + - ) +(1) = <z> + log wy + LA —00, (27

wt

tim 77(0) = Jim (10 (525 )+ (5) —o (“5))
=i (v(5) -0 ()

To calculate the limits related to the digamma function in (28), we introduce the following result.

and

(28)

Lemma 8 ([86]). For the digamma function 1), we have

1 1
logz — — < <logz — —.
ogw - < ¢(x) <logzx 5

By Lemma 8 and the squeeze theorem, we obtain lim,_, . ¥ (x) = lim,_, , log x. Hence,

lim 7}(v) = lim log <”) =0. (29)
12

V—00 V—00 + 1

Based on the results in (27) and (29), if 7/ (») is monotonically increasing on (2, 00), it has no zeros; if 77 (v) is monotonically
decreasing on (v, 00) for some v; > 2, it has at least one zero. Hence, we need to describe the monotonicity of 17 (v) for
€ (2,00). Consider the second derivative of 7} as follows:

1 2 1 v z/+1 1 wg — 3
1! — - /(,>,,
¢ (V) u—2+(y_2)2+2¢ 5 (g +V_2+wt+(1/72+wt)27

where ¢’ (z) = — fo log ydy denotes the trigamma function. Since the value of 1)’ cannot be analyzed directly, we introduce
the followmg result.

Lemma 9 ([87]). For the trigamma function i)', we have

1/1'(z)1+1+11+0(1>.

z 222 623  30x5



Define

1 1 1 1
/ —— PR — o —
V() = x + 222 + 623 3025’
and
1 1 1
V() = = +

z | 222 63
Based on Lemma 9, we have

Ui (x) <P’ (x) < Ylp(2). (30)

We first find the condition for 77 (v) being monotonically increasing, i.e., 7}'(v) > 0. By (30), we obtain a lower bound of
! (v) as follows:
1 2 1, /vy 1 vl 1 wy — 3
riw) > v =2 + (v—2)2 +§w{b <§) B 2¢‘/1b( 2 ) + v—24w + (v — 24w
1 2 1 1 2 8 1 1 2 1 wy — 3
T T e v T T s vl AP 341 v—2+w v —2+w)?
~ x2(v—2)
Cxalv—2)
where x; and yo are two relatively prime polynomial functions, defined respectively as

x1(2) = 1522 (z + we )% (x + 2)°(x + 3)3,

and

x2(z) = (—15w] + 90w; — 45)2°
+ (—240w} + 1620w; — 765)z®
+ (—1545w? + 12600w; — 5498)x"
+ (—4755w} + 55334w, — 21482)x°
+ (4583w7 + 150536w; — 48956)z°
+ (15388w? + 261368w; — 64616)x*
+ (61564w? + 285488w; — 45360) >
+ (97384w? + 181440w; — 12960)2>
+ (77760w? + 51840w; )z + 25920w?.

Since x1(v—2) > 0, 77’ (v) > 0 implies x2(v —2) > 0. It is sufficient to require all the coefficients in the polynomial x5 to be
nonnegative, which is achieved when w; € [3—+/6,3++/6]. It follows that 7" (v) = >, 1{'(v) > 0 if w; € [3—/6,3+ /6]
fort =1,...,n. Then, 7’(v) increases monotonically from —oo to 0 and therefore has no zeros on (2, co).

Then, we study the case where 7/ (v) is monotonically decreasing, i.e., 7{'(v) < 0 on (v, 00) for some v > 2. By (30),
we get an upper bound of 77/ (v) as follows:

1 2 1 v v+1 1 wy — 3
7 o Lo (Y
Tt (V) < 2 + (V—2)2 + Qwub <2> wlb< ) + +

vV — vV—2+4+ wy (l,f2+wt)2
1 2 1 1 2 1 1 2 8 1 wy — 3
:_V—2+(V—2)2+;+E+S?_V—|—l_(V+1)2_3(V—|-1)3+15(V—|—1)5+I/—2—|—wt+(]/_2+wt)2
_xs(r—2)
Cxav—2)

where Y3 is a relatively prime polynomial, defined as

x3(z) = (=150} + 90w; — 45)z°
(—270w? 4 1800w; — 855)2®
(—1980w; + 15570w; — 6877)z"
(—7185w} + 76066w; — 30227)x°
(10342w? 4 229796w; — 77874)x°
(15403w? 4 441222w; — 116486)z*
(93441w? 4 530048w; — 92340)3
(172684w? + 369360w; — 29160)x2
(

+
+
+
+
+
+
+
+ (155520w? + 116640w; )z + 58320w; .



Since x1(v —2) > 0, to have 1}'(v) < 0 on (14,00) for some v, > 2, it is sufficient to require the highest order of
x3(v) is negative which is achieved when w; € [0,3 — v/6) U (3 + v/6,00). It follows that " (v) = S°7 1/ (v) < O
on (maxi—i .. v, 00) if w, € [0,3 — V6) U (3 ++/6,00) for t = 1,...,n. Then, Y’ () decreases monotonically to 0 on
(maxy=1,..n i, 00), and hence it has at least one zero on (2, c0). [ |

APPENDIX C
PROOF FOR LEMMA 5

The second derivative of 77 is given by

noN Mo, (V v+1 n n 2n
Tl(l/)7§d) (2)1/}( )+V+1V—2+(y—2)2'

+1 n n 2n
TV L, (5) e (E _
rW) =g l3) 3w 5 ) Yo o2 T ooy
160* + 2902 + 1902 + 361 + 12
32(v+1)3(v —2)2

By (30), we have

> 0.

We can verify 77’ > 0 on (2, 00), implying 7 is strictly convex.
The second derivative of 75 is computed as

1 _ - (wt - 3)2
W)= Z;@+n@—2+wg—

We can obtain that 7' (v) < 0 on (2, 00), i.e., T5(v) is concave.
APPENDIX D
PROOF FOR PROPOSITION 6
Proof: We first analyze the two limits of 7’(v). When v approaches 2, we have

AN 1 B oy 2 B § v—2+4+w 3 — wy
111nT(V)31_>1112< nlog(v — 2) no— +ny (1) —ny 5 +nlog3+n+z log P +Z_2+wt

v—2
t=1

= —0OQ.

When v approaches co, we have

. A/ . V+1 - v K _ I/+1 "
i 70 = tim (niog (755) =g e (5) o (75 ))+Zt_1
. " 2+wt B*wt
1 1 1
V;H;onog< +1>+Z[Og< PR )U_ij

anlo v —24w n 3 — wy
A v—2+w; |’

t=1

y—2+w - 3—w
t+z t

= 1u72+wt

log

where the second equation is due to Lemma 8. It is easy to verify that

7 -0, w =3, fort=1,...
lim 7' (v) W i or "
v—00 > 0, otherwise.
Since 7 is strictly convex on (2,00), Y is strictly monotonically increasing on (2 oo). Hence, if wy = 3 fort = 1,...,n,
i.e., lim,_, 7'(v) = 0, then 7’ (v) has no zeros; if there exists wy # 3 for t =1,...,n, i.e., lim,_ o 7'(v) > 0, then 7’ (v)
has a unique zero. [ ]
APPENDIX E

ESTIMATION OF GARCH VARIANTS
A. Threshold GARCH

To describe the asymmetric clustering effect in volatility, the threshold GARCH [8] was proposed as an extension of the
vanilla GARCH, with the volatility equation given by

q p
ht =w + Z (aief—j, + Eil(et_i < O)E?_Z) + Z ﬂjht_j, (31)

i=1 j=1



where the coefficients &; for i = 1,. .., ¢ capture the asymmetric response of volatility to past negative shocks and I(-) denotes
the indicator function. The threshold GARCH model is also known as the GJR-GARCH model, as an essentially equivalent
formulation was independently introduced by Glosten, Jagannathan, and Runkle in [9]. For the model to be valid, in addition
to the condition in (5), it is also required that

& >0, fori=1,...,q.

Define
T
'7:[al,...,aq,gl,...,§q,ﬁl,...,ﬂp] .

Similar to the GARCH setting, to ensure strict stationarity with a finite unconditional variance, the following stationarity
condition is imposed:

~T1< 1.
In contrast, when
y1=1,
the process remains strictly stationary but has an infinite unconditional variance. Define
c = [ef_l, ce ef_q, I(e,_1)e? ..., I(et_q)ef_q, Ri_1y..n,s ht_p]T

The volatility equation in (31) can then be expressed compactly as
hy = w+ 'cht.
Since both the constraint structure and the form of the volatility equation are analogous to those in the GARCH model, the
threshold GARCH model can be estimated in a similar manner using the proposed BMM algorithm.
B. GARCH with Exogenous Covariates

The generalized autoregressive conditional heteroskedasticity model with exogenous covariates (GARCHX) model extends
the standard GARCH framework by allowing external information to enter the conditional variance equation directly. The
volatility equation of a GARCHX(q, p, d) model is given by

q p d
hy =w+ Z aﬁ?,i + Zﬂjht—j + Z OrSt—rk,
i=1 j=1 k=1

where ¢;_1,...,¢_q denote observable exogenous variables and 64, ..., 60, are the corresponding coefficients. Define

¥ =Tlon,. s ag By By, 04]
and
c = [6?_1, e ef_q, ht—1y. o he—pySe—1, .. ,gt_d]T
The conditional variance equation can then be expressed compactly as
hi =w+ ’cht.

The nonnegativity and stationarity constraints for GARCHX models coincide with those for standard GARCH models and are
therefore omitted for brevity. Since both the constraint structure and the functional form of the volatility equation are analogous
to those in the GARCH model, GARCHX models can be estimated in a similar manner using the proposed BMM algorithm.

APPENDIX F
JOINT ESTIMATION OF GARCH WITH AUTOREGRESSIVE CONDITIONAL MEAN MODELS
Assume that y; in (1) follows an autoregressive model of order %, denoted as AR(k), which specifies the conditional mean
Mt as

k
pe=do+ > bk =9 Yy,

i=1
where
&= [bo, d1,..., 0],
and
Y=L y—1s k]



In this section, we demonstrate how the penalty method and the proposed BMM algorithm can be adapted to solve the joint
ML estimation of the GARCH(q, p) and AR(k) models. Considering the Gaussian AR(k)-GARCH(g, p) model, we have the
following estimation problem

2 2
.
n (yt -9 y; g 2 p
min ) |logh; + h> + g he—w—Y o (yH- - ¢>TyH-) = Bihi—;
t N
Jj=1

Y, h,
w v hé i—1

s. t. w>0,v>0,ve€S,

where all values of y; for t =1 —max{k,q},...,0,...,n, e fort =1—g¢q,...,0, and h; fort =1—p,...,0 are assumed to
be known. The update rules for the variables w, v, and h follow directly from Section (IV). Hence, we focus on the derivation
of the update for the ¢-block in the remainder of this section.

The subproblem for ¢ is given as follows:

n

2

t=1 =1
where
T
by =h; B —w.

Problem (32) is an unconstrained quartic program in ¢, for which closed-form solutions are generally unavailable. To address
this, we introduce a suitable surrogate function to facilitate efficient optimization.
Define

b=[1-07] .

and

U, = [y, y)

Using Lemma 1, for the first term in the objective function of (32), we have

(v—0w) =8 (9] )d< 9?0 6+26" (9.5 —8.°T) &+ const.

For the second term, we write

}T

q s 4 )
Q; (yt—i - ¢Tyt7i> = Z%‘(ﬁ Y09 =b Yo,
= i=1

i=1

where Y; = 37| ,9;_;9,_;. Then we obtain

2
(qu o (i~ 8Tw) m) = (8 ¥id—b) = (8'Vid) ~2md Yip+ 2 (33)

=
For the term (&TY@Y in (33), based on Lemma 1, we have
(87¥1d) = vec (38" vee (Y vee () vee (36 )
< [lvee (Y)|* vee ({bé)T)T vee (¢ )
+2vec (') ! (vee (¥4 vee (Y0) T = flvee (Y1) * ) vee (@T) + const.

— vee (YOI 67 +2((87Yi9) & Yid— Ivec(Y )P ST (86 ) ) +const.

(34)

~T ~
Consider the term —2b;¢p Y ¢ in (33). Based on Lemma 1, we have

—thbeYt(;S < —4bt<;§TYté + const.

2
‘ in (34). Based on Lemma 1, we can further derive

Consider the term H(}be‘
7ol - (17 (60))" - (308) 1) (309
<(k+2) (&)@ &a)T (é@&b) +2 (&@&)T (117 — (k +2)I) @@@ + const.,



~T ~
where © denotes the elementwise product. For the term ¢ Y ;¢ in (34), based on Lemma 1, we have

a
& H:’)t—i||2> $'¢+20 <Yt - (Zai Hgt—i||2> I) ¢ + const.
i=1

For the term f&; (@) (}5 in (34), based on Lemma 1, we have

q
éTYt&s < (

i=1

AT~ ~T ~

9" (90) b <20 0 b+ const.

Combining the above results, the surrogate function for the objective in (32) is given by

D vee (V)| (k+2) (0 8) (606)

M=

t

Fulvee (V) (30 @) (17— (k+2)1) (20 ) + (;tn@ﬂ ICR ) (Za H@t_in?)) (%)

i=1

1

+26" (,j (39~ 19.°1) +n (8 Y:9) (Yt - (Zai Hm\f) I) —1llvee (Y)|* 66 ntht) | + const.
=t i=1

\E

g [vec (Y)|> (k+2) (0 @) (9O o)

t=1

+nlvec(Y)I* (@) [(117  (k+21) (60 &

Nsira (,i@tnz +1 (8 Y19) <§;ai H@t_iHZ)) (¢ 0)
207 K}i (8.9~ 19.°T) + 1 (' Y:0) (Yt - (;a H@t_iHQ) I)

—n|vec (Yt)HQ@T - Wtht> &’]

-+ const.,

2:k+2

where @952 is the subvector of  from the 2nd to the (k+2)-th elements. The above function is quartic in ¢ and is separable
over different elements in ¢. The solution of ¢ based on the above surrogate function can be obtained based on the cubic
formula.
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