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Abstract—This paper studies the problem of recovering a low-
rank matrix from noisy bilinear measurements, which arises in
a range of real-world applications. We propose a novel estimator
that minimizes a least-squares loss regularized by a nonconvex
penalty to promote low-rank structure. To solve the resulting
nonconvex problem, we develop an efficient proximal gradient
descent algorithm. We show that, under mild conditions, the
proposed estimator consistently recovers the underlying matrix
and achieves the statistically optimal convergence rate. Numerical
experiments on both synthetic and real-world datasets validate
the theoretical guarantees and demonstrate the practical effec-
tiveness of the proposed method.

Index Terms—Compressive sensing, bilinear measurements
model, matrix sketching, covariance sketching, graph sketching.

I. INTRODUCTION

Compressive sensing has significantly advanced the field
of signal processing by enabling the accurate reconstruction
of high-dimensional signals from a reduced number of mea-
surements, by exploiting the inherent sparsity of the signal
representation in an appropriate basis [1]–[4]. By relaxing
the conventional Nyquist–Shannon sampling rate requirement,
compressive sensing allows for sub-Nyquist signal acquisition,
which is especially beneficial in applications constrained by
limited bandwidth, sampling rate, or energy budget. This
framework has found extensive applications in diverse do-
mains, including dynamic background subtraction in video
surveillance [5], accelerated magnetic resonance imaging [6],
and wideband spectrum sensing in cognitive radio systems [7],
as well as in numerous other contexts [8]–[13]. The theory of
compressive sensing establishes that a high-dimensional sparse
signal vector x ∈ Rd can be stably and accurately recov-
ered from an underdetermined system of linear measurements
y = Ax, where A ∈ Rm×d is a suitably constructed sensing
matrix with m ≪ d, provided that it satisfies certain structural
conditions such as mutual incoherence or the restricted isome-
try property [14]–[16]. It has been theoretically established that
m = O(s log(d/s)) measurements are sufficient to recover
an s-sparse signal when the sensing matrix is drawn from a
sub-Gaussian distribution [17], and that m = O(s log2(d/s))
measurements suffice when the sensing matrix follows a sub-
exponential distribution [18].

Recent advances have extended the classical compressive
sensing paradigm from sparse vector recovery to the recovery
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of structured matrices from compressed observations [19]–
[23]. In particular, one class of problems considers recovering
low-rank matrices from linear measurements [22]. However, in
many practical applications, the measurements are bilinear in
nature [21]. A canonical bilinear measurement model is given
by

Y = AX⋆B⊤ +E, (1)

where A,B ∈ Rm×d are sketching (or sensing) matrices,
X⋆ ∈ Rd×d is a low-rank matrix, and E denotes a possible
additive noise.

The model (1) arises naturally in various applications,
including graph sketching [24], [25] and covariance sketching
[20], [26]. In the context of graph sketching, consider a
large-scale graph G = (V, E), where the size of V poses
significant challenges for storage, communication, and compu-
tation. A common strategy is to construct a compressed graph
G′ by partitioning the vertex set V into m disjoint subsets
V1,V2, . . . ,Vm. In G′, each partition Vi is represented by a
single node, and the weight of the edge between nodes Vi and
Vj corresponds to the total number of edges in G connecting
vertices in Vi to those in Vj . Let Ai denote the indicator row
vector for partition Vi, i.e., (Ai)j = 1 if node j ∈ Vi, and
0 otherwise. Stacking these vectors yields a matrix A, and
the adjacency matrix of the compressed graph is then given
by Y = AX⋆A⊤, where X⋆ is the adjacency matrix of
the original graph G. In covariance sketching, consider two
zero-mean random vectors x and x′ with an unknown cross-
covariance matrix X⋆ = E(xx′⊤). One applies sketching
matrices A,B and observes the compressed vectors z = Ax
and z′ = Bx′. The cross-covariance matrix of the sketches
then satisfies E(zz′⊤) = AX⋆B⊤. In practice, however,
one typically relies on the empirical cross-covariance of finite
samples, which introduces a noise component E, yielding the
model Y = AX⋆B⊤ +E. In [21], the problem of noiseless
recovery is studied under the assumption that the target ma-
trix X⋆ exhibits distributed sparsity. The proposed recovery
approach involves solving the following convex optimization
problem:

minimize
X

∥X∥1

subject to Y = AXB⊤.
(2)

It is shown that exact recovery is achievable with high
probability when the sketching dimension satisfies m =
O(

√
sd log d) in the absence of noise. However, extending
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this analysis to the noisy case and developing estimators
with improved statistical guarantees remain important open
problems.

In addition to sparsity, alternative structural priors on X⋆,
such as low-rankness, are frequently encountered and are
crucial in many practical scenarios, including phase retrieval
[27], power spectrum estimation [28], collaborative filtering
[29], and metric learning [30]. Advances in the theory and
algorithms for sparse signal recovery provide valuable insights
into low-rank matrix recovery, since low-rankness can be
interpreted as sparsity in the singular values of a matrix.
Classical methods such as basis pursuit [31], orthogonal
matching pursuit [32], and the iterative shrinkage-thresholding
algorithm [33] have laid a strong foundation in the sparse
recovery literature. Among these, the least absolute shrinkage
and selection operator (LASSO) [34] stands out due to its
computational tractability and well-established statistical guar-
antees. However, LASSO may introduce estimation bias and
fail to achieve consistent support recovery, particularly in the
presence of highly correlated variables [35], [36]. To address
these limitations, nonconvex regularization methods have been
developed as tighter approximations to the ideal ℓ0 penalty.
Prominent examples include the smoothly clipped absolute
deviation (SCAD) [37] and the minimax concave penalty
(MCP) [38], which provide improved support recovery and
reduced estimation bias. Since the nuclear norm is essentially
an ℓ1 norm applied to the singular values, these nonconvex
penalties naturally extend to low-rank matrix recovery.

In this paper, we propose a novel estimation method for
low-rank matrix recovery from noisy bilinear measurements,
employing a nonconvex penalty on the singular values to
promote low-rank structure. To solve the resulting nonconvex
optimization problem, we develop an efficient algorithm based
on a proximal gradient homotopy method. Furthermore, we
rigorously establish that the proposed estimator possesses an
oracle property under a minimal signal strength condition,
guaranteeing exact recovery of the true rank of the underlying
matrix.

II. PROPOSED METHOD

In this section, we develop a nonconvex regularized estima-
tor for low-rank matrix recovery under bilinear measurements.
Then, to compute the proposed estimator, we develop an
efficient optimization algorithm based on proximal gradient.

A. Proposed Estimator Based on Nonconvex Penalty

To estimate a low-rank matrix X from observed data Y
with bilinear noisy measurements, we consider a nonconvex
regularized least-squares optimization framework. Specifically,
we introduce the following estimator:

minimize
X

1

2m2

∥∥∥Y −AXB⊤
∥∥∥2
F
+ Pλ(X), (3)

where Pλ(X) =
∑d

i=1 pλ(σi(X)) is a decomposable noncon-
vex penalty imposed on the singular values of X , governed
by a tuning parameter λ > 0. Such a regularization structure

leverages sparsity in singular values, promoting low-rank so-
lutions. The penalty term is characterized by a decomposition:

Pλ(X) = λ∥X∥∗ +Qλ(X),

where ∥X∥∗ denotes the nuclear norm and Qλ(X) =∑d
i=1 qλ(σi(X)) encapsulates a concave adjustment applied

to individual singular values σi(X). Correspondingly, the
scalar penalty function pλ(t) admits a decomposition into
a standard ℓ1 penalty and a concave perturbation pλ(t) =
λ|t|+ qλ(t), where qλ(t) introduces nonconvexity.

Two prominent examples within this penalty framework
include SCAD [37] and MCP [38].

Assumption 1. The penalty functions pλ(t) and the associated
concave components qλ(t) satisfy the following properties:

1) There exists ν > 0 such that the derivative satisfies
p′λ(t) = 0 for all t ≥ ν;

2) Both pλ(t) and qλ(t) are symmetric about zero, i.e.,
pλ(t) = pλ(−t), qλ(t) = qλ(−t);

3) The derivative q′λ(t) is monotonic and Lipschitz contin-
uous in the interval [0,∞). Explicitly, for t2 ≥ t1 ≥ 0,
there exist constants ζ− ≥ ζ+ > 0 such that −ζ− ≤
q′λ(t2)−q′λ(t1)

(t2−t1)
≤ −ζ+.

4) Both qλ(t) and its derivative vanish at zero, i.e., qλ(0) =
q′λ(0) = 0;

5) There exists a constant λ > 0 bounding the magnitude of
the derivative, i.e., |q′λ(t)| ≤ λ.

These conditions highlight essential structural characteris-
tics. Particularly, condition (3) emphasizes the concavity level,
directly influencing the degree of nonconvexity of the penalty
function.

B. Optimization Algorithm

Define F (X) = f̃(X) + λ ∥X∥∗, where f̃(X) = f(X) +
Qλ(X) and f (X) = 1

2m2 ∥Y − AXB⊤∥2F. The proposed
methodology operates by iteratively constructing a quadratic
surrogate function to approximate the function f̃(X) around
the current estimate, thereby yielding a locally convex sub-
problem. The regularization parameter λ is progressively de-
creased throughout iterations, leveraging the homotopy con-
tinuation approach to facilitate convergence towards a global
solution.
Quadratic Approximation: A second-order approximation of
f̃(X) around the point M is given by:

F̃ (X;M) =f̃(M) + ⟨∇f̃(M),X −M⟩+ L

2
∥X −M∥2F

+ λ ∥X∥∗ , (4)

where L is a Lipschitz constant of f̃(X) and ⟨·, ·⟩ is the inner
product. In practice, we initialize the Lipschitz constant with
a conservative lower bound Lmin and iteratively adjust this
estimate by a multiplicative factor (typically doubling Lmin)
until suitable convergence criteria are met. Consequently, the
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Algorithm 1: Proximal Gradient Algorithm
Input: λ0 > 0, ϵ > 0, Lmin > 0, η ∈ (0, 1), δ ∈ (0, 1)

1 Initialize: X0 = 0, L0 = Lmin

2 for t = 0, 1, . . . , T − 1 do
3 λt+1 = ηλt;
4 ϵt+1 = λt/4;
5 k = 0;
6 Xk = Xt;
7 while ωλt+1(X

k) > ϵt+1 do
8 k = k + 1;
9 Xk = argminX F̃L,λ(X;Xk−1);

10 if F (Xk) > F̃ (Xk;Xk−1) then
11 Lk−1 = 2Lk−1

12 end
13 Lk = max{Lmin, Lk−1/2};
14 end
15 Xt+1 = Xk;
16 Lt+1 = Lk;
17 end

Output: {Xt}Tt=1

optimization problem reduces to finding the minimizer of the
surrogate function F̃ (X;M):

X ∈ argmin
X

F̃ (X;M) (5)

The minimization problem in (5) can be efficiently solved
using the singular value thresholding method, as described in
[39], [40].
Optimality Conditions and Duality: Let X̂ be the global
minimizer of the optimization problem (3). The optimality
condition for X̂ can be characterized by

⟨X̂ −X,∇f̃(X̂) + λΥ′⟩ ≤ 0, (6)

where Υ ∈ ∂∥X̂∥∗ is a subgradient of the nuclear norm at X̂ .
Since an analytical solution does not exist, the exact solution
can never be achieved. To quantify optimality, we consider
an approximate solution. First, we introduce the duality gap,
ωλ(X), which measures the suboptimality of a matrix X:

ωλ(X) = min
Υ′∈∂∥X̂∥

max
X′

{
⟨X̂ −X,∇f̃(X̂) + λΥ′⟩

∥X −X ′∥∗

}
= min

Υ′∈∂∥X̂∥
{∥∇f̃(X̂) + λΥ′∥F}, (7)

In view of the duality gap, if X is the exact minimizer, then
ωλ(X) ≤ 0. Otherwise, if X is close to the optimum, ωλ(X)
will likely be a small positive value.
Regularization Parameter Update: Let the initial regulariza-
tion parameter be denoted as λ = λ0, where λ0 is chosen to be
sufficiently large. The parameter λ is progressively decreased
at each iteration following the formula: λt = ηtλ0, where η
is a constant. To guarantee that each iteration step attains the
prescribed accuracy, we further force ϵt < λt/4.

III. MAIN RESULTS

In this section, we provide formal theoretical results for our
proposed estimator. We begin with some necessary prelimi-
naries.

Consider the ground truth matrix X⋆ with singular value
decomposition (SVD) given by X⋆ = U⋆Σ⋆V ⋆⊤, where
U⋆,V ⋆ ∈ Rd×r, and Σ⋆ = diag(σ⋆

1 , . . . , σ
⋆
r ). We introduce

the subspace F and F⊥, which are defined in terms of the
row and column spaces of the matrices:

F (U⋆,V ⋆) := {∆ | row (∆) ⊆ V ⋆, col (∆) ⊆ U⋆} ,
F⊥ (U⋆,V ⋆) := {∆ | row (∆) ⊥ V ⋆, col (∆) ⊥ U⋆} .

Next, we first introduce a restricted set and state two assump-
tions on the function f(X) therein. These conditions have
been extensively investigated in prior studies [41], [42], which
ensures that f(X) is well-conditioned in the local region.

Definition 2. Define a local region R as

R = {∆ | ∥ΠF⊥ (∆)∥∗ ≤ 5 ∥ΠF (∆) ∥∗} , (8)

where ΠF(·) is the projection operator that projects matrices
into the subspace F .

Assumption 3. The empirical loss function f (·) is ρ−-
strongly convex and ρ+-smooth over R with ∞ > ρ+ ≥ ρ− >
0. Specifically, for all X −X ′ ∈ C, we have:〈
X −X ′,∇f (X)−∇f

(
X ′)〉 ≥ ρ−

∥∥X −X ′∥∥2
F
,〈

X −X ′,∇f (X)−∇f
(
X ′)〉 ≥ ∥∇f (X)−∇f

(
X ′) ∥2F

ρ+
.

These conditions are standard structural assumptions en-
suring desirable curvature properties of f(X). It has been
demonstrated that, with high probability, f (X) can be shown
to meet these conditions [43].

We now proceed to establish a deterministic bound.

Theorem 4. Define S1 = {i | σ⋆
i ≥ ν}, S1 = {i | ν > σ⋆

i >
0} with their corresponding cardinalities given by s1 = |S1|
and s2 = |S2|. Suppose Assumptions 1 and 3 hold, if ρ− > ζ−,
λ ≳ ∥A⊤EB∥F/m2, we have:

∥X̂ −X⋆∥F ≲ τ
√
s1 +

√
s2 (9)

where τ = ∥ΠFS1
(∇f (X⋆)) ∥F and FS1 is a subspace of F

associated with S1.

Note that the derived error bound comprises two distinct
components: one corresponding to singular values of large
magnitude, and the other corresponding to those of smaller
magnitude. In what follows, we introduce the oracle estimator,
which serves as an essential benchmark for assessing the
performance of the proposed estimator.

Remark 5. The oracle rate refers to the statistical conver-
gence rate of the oracle estimator, which knows the true rank
subspace F (U⋆,V ⋆). The oracle estimator X̂

O
is defined as

X̂
O
= arg min

X∈F(U⋆,V ⋆)
f (X)
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Fig. 1: Visualization of the ground truth and reconstructed estimates obtained under different regularization penalties.

According to the definition, it is easy to obtain that X̂
O

satisfies ∥X̂
O
−X⋆∥F ≲ ∥ΠF (∇f (X⋆)) ∥F.

It is worth noting that the first term on the RHS of (9)
closely approaches the oracle convergence rate. Furthermore,
this term becomes dominant provided that the number of
singular values with small magnitudes remains sufficiently
limited. Therefore, we introduce the following minimum signal
strength condition.

Assumption 6. The singular value of the ground truth X⋆

satisfies

min
i∈S1∪S2

|σ⋆
i | ≥ ν + 2

√
s1 + s2∥A⊤EB∥F/(m2ρ). (10)

Assumption 6 is commonly adopted in the analysis of
nonconvex penalized regression problems [22], [44], [45].
This condition is relatively mild since the second term tends
to diminish significantly as the sample size m increases.
Consequently, Assumption 6 ensures that the set S2 becomes
empty. Next, we give the oracle property of our estimator.

Theorem 7 (Oracle Property). Suppose Assumptions 1, 3
and 6 hold. If ρ > ζ−, and λ ≥ (ρ−+

√
s1+s2ρ

+)∥A⊤EB∥F

2m2ρ− ,

we have rank(X̂) = rank(X̂
O
) = rank (X⋆) and

∥X̂ −X⋆∥F ≲
√
s1τ, (11)

where τ = ∥ΠF (∇f (X⋆))∥F.

Next, we consider a more practical scenario where the
noise entries are independently and identically distributed
sub-Gaussian random variables with variance κ and the vec-
torized sketching matrices vec(A), vec(B) ∈ Rm2

follow
sub-Gaussian distributions. That is vec(A) ∼ N (0,Θ1),
vec(B) ∼ N (0,Θ2). We term these sensing matri-
ces as Θ1-ensemble and Θ2-ensemble, respectively. Define
ϖ1(Θ1) =

√
sup∥u∥2=1,∥v∥2=1 Var(u

⊤Av) and ϖ2(Θ2) =√
sup∥u∥2=1,∥v∥2=1 Var(u

⊤Bv). Then, we provide explicit
statistical guarantees under the sub-Gaussian design.

Corollary 8. Suppose Assumptions 1 and 3 hold. Con-
sider the random design matrices A sampled from the Θ1-
ensemble and B sampled from the Θ2-ensemble. If ρ ≍

√
λmin(Θ1)λmin(Θ2) > ζ−, where λmin(·) denotes the

minimal eigenvalue, and λ ≳ κ
√
ϖ1(Θ1)ϖ2(Θ2)d/m, then

with probability at least 1− exp(−d),

∥∥∥X̂ −X⋆
∥∥∥
F
≲ O

(√
ϖ1(Θ1)ϖ2(Θ2)

λmin(Θ1)λmin(Θ2)

κ

m

[
s1+

√
s2d
])

.

This result is a direct consequence of Theorem 4. A closely
related problem has been previously addressed via convex
relaxation techniques. Specifically, building upon the analysis
presented in [46], we have

∥X̂ −X⋆∥F ≲ O

(√
ϖ1(Θ1)ϖ2(Θ2)

λmin(Θ1)λmin(Θ2)

κ
√
s2d

m

)
.

When Assumption 6 is satisfied, one can yield the faster
convergence rate O

(√
ϖ1(Θ1)ϖ2(Θ2)

λmin(Θ1)λmin(Θ2)
κs1
m

)
.

IV. EXPERIMENTS

In this section, we evaluate the empirical performance of
our proposed estimator and the corresponding algorithm under
both synthetic and real-world settings. For every experimental
configuration, we repeat 100 independent trials and report the
averaged relative reconstruction error ∥X̂−X∥F

∥X∥F
over all runs.

We employ the SCAD and MCP penalties, where SCAD is
given by

pλ (t) =


λ |t| , if |t| ≤ λ,

− t2−2bλ|t|+λ2

2(b−1) , if λ < |t| ≤ bλ,
(b+1)λ2

2 , if |t| > bλ,

for some b > 2 and MCP is defined as

pλ (t) = sign (t)λ ·
∫ |t|

0

(
1− z

λb

)
+
dz

for some b > 0. Throughout, the tuning parameter λ for
each method is chosen by five-fold cross-validation, and any
additional nonconvex tuning parameter b is selected from a
candidate set so as to optimize overall performance.
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TABLE I: Performance Comparison of Multiple Methods Across Datasets.

Dataset Nuclear Weighted Nuclear SCAD MCP

Fashion-MNIST [47] 0.7683± 0.1076 0.7286± 0.0630 0.0124± 0.0033 0.0108± 0.0012
Places365 [48] 0.4472± 0.0827 0.4647± 0.0484 0.0079± 0.0013 0.0066± 0.0021
ImageNet-O [49] 0.4574± 0.1502 0.5069± 0.1149 0.0137± 0.0079 0.0138± 0.0056

(a)

6.
70

1.
80

3.80

6.
30
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0

1

2
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0.00

24.20

0.00

4.80

(b) (c) (d)

Fig. 2: An illustrative example of graph sketching is shown as follows: (a) The original graph G with 15 nodes; (b) The sketch
of the graph G, where the nodes represent the partitions and the edges represent the total number of edges of G that cross these
partitions; (c) The graph recovered using least square error minimization; (d) The graph recovered using the SCAD penalty.

A. Synthetic Data

We first evaluate the recovery performances of the non-
convex estimator in (3), instantiated with SCAD and MCP
penalties, against the convex nuclear-norm baseline on syn-
thetic data. A ground truth matrix X⋆ ∈ R50×50 is gen-
erated as X⋆ = LL⊤, where L ∈ R50×10 has indepen-
dent and identically distributed (i.i.d.) entries drawn from
a Gaussian distribution N (0, 1). The sketching matrix A
and B are drawn independently with i.i.d. N (0, 1) entries,
and the measurement is obtained via model 1 in which
each entry of E follows N (0, 0.01). Fig. 1a illustrates the
ground-truth low-rank structure. Figs. 1c–1b compare recon-
structions from MCP, SCAD, and nuclear-norm minimization,
respectively. Both MCP (Fig. 1c) and SCAD (Fig. 1d) yield
near-perfect reconstructions. In contrast, the nuclear-norm
solution (Fig. 1b) exhibits mild smoothing, which slightly
attenuates fine low-rank features. These heatmaps vividly
demonstrate the enhanced ability of nonconvex penalties to
recover exact low-rank structures, which backs up our theo-
retical analysis, and the improvement is significant compared
with the traditional nuclear-norm penalty. We also evaluate our
method on graph sketching. Fig. 2a represents the original
graph. Fig. 2b shows the sketched version of the original
graph, obtained by applying the sketching matrix A, which
is randomly generated following a binomial distribution:

A =


0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 1 1 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0 1

 .

Fig. 2c and 2d illustrate the graph recovery results using least
squares error minimization and the SCAD penalty function,
respectively.

B. Real-world Images

We further validate on three standard image datasets:
Fashion-MNIST [47], Places365 [48], and ImageNet-O [49]. A
color image is resized and converted to a d×d grayscale matrix
X . To enforce low-rank structure, we compute the thin SVD
X = UΣV ⊤ and retain only the top r singular components,
yielding Xr = U (:,1:r)Σ1:r,1:rV

⊤
(:,1:r). Specifically, we set

(d, r) = (28, 10) for Fashion-MNIST [47], (d, r) = (256, 100)
for Places365 [48], and (d, r) = (512, 200) for ImageNet-O
[49]. We generate two sketching matrices A,B ∈ Rm×d with
i.i.d. entries drawn from N (0, 1), choosing m = 5, 50, 80 for
Fashion-MNIST [47], Places365 [48], and ImageNet-O [49].
We also generate a noise matrix E whose entries are i.i.d.
N (0, 0.01). Observations are formed as Y = AXrB

⊤ +E.
We solve the low-rank recovery problem using SCAD [37]
and MCP [38]—as well as several existing baselines: nuclear
norm and weighted nuclear norm. Table I reports the average
reconstruction error across all datasets.

V. CONCLUISON

In this paper, we have studied the problem of recovering
low-rank matrices from noisy bilinear sketching measure-
ments. We have proposed a novel estimator that minimizes
a least-squares loss regularized by a nonconvex penalty to
promote low-rank structure, and developed an efficient prox-
imal gradient algorithm to solve the resulting nonconvex
optimization problem. We have shown that the proposed
method achieves the oracle convergence rate in the Frobenius
norm under a minimal signal-strength condition. Numerical
experiments on both synthetic and real-world datasets have
validated the theoretical guarantees and demonstrated the
practical effectiveness of the method.
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