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Abstract—The covariance matrix is a fundamental second-
order statistic in signal and information processing that quantifies
the linear relationships among multiple variables. When data
evolves rapidly, or the acquisition devices have limited processing
power and storage—particularly given the large dimensionality of
modern datasets—covariance estimation becomes challenging. To
address these challenges, it is desirable to estimate the covariance
matrix from a single pass over the data with compressive mea-
surements. In this paper, we study covariance matrix estimation
in high dimensions based on quadratic measurements, assuming
that the covariance matrix exhibits a sparse structure. We for-
mulate the problem as a least-squares estimation with nonconvex
sparsity-inducing penalties. To efficiently compute this estimator,
we develop a multi-stage convex relaxation algorithm based
on the majorization-minimization algorithmic framework. We
comprehensively characterize the computational and statistical
properties of the iterates from the algorithm and show that
the estimator from the proposed method achieves the oracle
statistical rate of convergence after sufficient iterations. Numer-
ical simulations support the theoretical findings and validate the
performance of the proposed estimator.

I. INTRODUCTION

In recent decades, compressed sensing (CS) has garnered
significant attention due to its remarkable compression effi-
ciency and low computational complexity in high-dimensional
signal and information processing [1]–[3]. The core principle
of CS lies in exploiting the sparsity inherent in many real-
world signals when represented in appropriate bases. The
sparsity enables the original high-dimensional signals to be
efficiently sub-sampled using random linear projections and
accurately reconstructed from their low-dimensional mea-
surements [4]–[6]. In many practical applications, however,
random processes are involved. In such settings, the recon-
struction of original signals itself is not meaningful [7], [8].
Instead, the focus shifts towards extracting critical quanti-
ties from signals (such as second-order or even higher-order
statistics), which contain valuable features and provide reliable
information about the random processes [9]–[11].

The covariance matrix, as a fundamental second-order sta-
tistical tool, is pivotal to numerous tasks in signal processing
[12]–[14] and machine learning [15]. Specific applications
include spectral estimation [16], adaptive filtering [17], beam-
former design [18], principal component analysis [19], linear
and quadratic discriminant analysis [20], among others. In
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practice, the covariance matrix is not directly observable and
must, hence, be estimated from empirical data. Consider a
zero-mean random vector x ∈ Rd with covariance matrix
Σ⋆. A widely used estimator of Σ⋆ is the sample covariance
matrix (SCM) S = 1

n

∑n
t=1 xtx

⊤
t . The computation of SCM

relies on the availability of complete data samples [21], [22].
However, obtaining a sufficient number of complete data
samples for a reliable estimator is computationally expensive
and resource-intensive [23], [24], especially when data evolves
rapidly or sampling devices have limited processing power and
storage. The problem becomes more pronounced when we are
faced with modern high-dimensional datasets.

In lieu of conducting complete measurements, estimating
the covariance matrix based on compressed measurements
has emerged as a viable alternative. Consider a compressed
measurement of x in the form a⊤x, where a is a sensing
vector. The variance of a⊤x serves as a compressed sketch
of Σ⋆, which can be effectively stored and processed. The
a⊤Σ⋆a is a quadratic function of a and is hence referred to
as quadratic measurements (or rank-one measurements) [25].
Our target is to efficiently reconstruct the covariance matrix
from quadratic measurements [26]–[28]. A central question in
this framework is whether it is possible to design the sensing
vector a such that the resulting compressive sketch exhibits
statistically desirable properties, enabling accurate reconstruc-
tion of the covariance matrix Σ from a minimal number of
measurements. While Σ may generally not be identifiable
under arbitrary sensing designs, reliable recovery is possible
with cleverly designed a when Σ possesses certain latent
structures, such as sparsity, in alignment with the principles of
CS [29]–[31]. In high-dimensional covariance matrix estima-
tion problems, where the sample size is small relative to the
ambient dimension of the underlying parameter to be estimated
[22], [32], the sparsity assumption is actually well-justified
and widely adopted by many practical applications [25], [33],
[34]. In the literature, covariance estimation from quadratic
measurements has been investigated [25]–[27]. In [35], [36],
the authors explored the recovery of second-order statistics
of a cyclostationary signal from random linear measurements,
assuming that the covariance matrix is approximately sparse.
They focused on the sampling process and proposed an ℓ1-
minimization based recovery method without performance
guarantees. The authors in [25] presented a unified framework
for compressing and recovering sparse covariance matrices us-
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ing the ℓ1-norm heuristic. They showed that O
(
s log

(
d2/s

))
measurements are sufficient for compressing a d-dimensional
sparse covariance matrix with s non-zero entries. Concur-
rently, Dasarathy et al. [27] sketched the covariance matrix
Σ as AΣB⊤, assuming Σ exhibits distributed sparsity,
with sketching matrices A and B constructed from expander
graphs. It is proved that the sample complexity for com-
pressing distributed sparse covariance matrices is O(

√
d log d).

It is well-known that methods based on the ℓ1-norm, e.g.,
Lasso [37], introduces a non-negligible bias into the resulting
estimator [38], which compromises the estimation accuracy. To
alleviate this bias effect, nonconvex penalties such as smoothly
clipped absolute deviation (SCAD) penalty [38], minimax
concave penalty (MCP) [39] and capped ℓ1-regularization [40]
have been proposed as alternatives. It has been demonstrated
in [38]–[40] that the nonconvex penalized regression can
effectively eliminate the estimation bias in Lasso and achieve
improved statistical convergence rates. However, the theory
of nonconvex penalty in the context of covariance estimation
from compressed measurements remains underexplored.

In this paper, we study the quadratic measurement model for
covariance matrix estimation. We show that for a more general
class of sub-Gaussian sensing vectors than those considered in
prior work [25], it is possible to derive the covariance matrix
exactly and establish theoretical performance guarantees. We
formulate the problem as a least-squares estimation with
nonconvex sparsity-inducing penalties. However, the analysis
of the theoretical performance guarantee is complicated due to
the nonconvexity of the objective function. To address this, we
introduce an efficient multi-stage convex relaxation algorithm
based on the majorization-minimization (MM) framework,
solving the original problem via a sequence of convex sub-
problems. We prove that the proposed estimator achieves faster
statistical convergence rates compared to the conventional
estimator using the ℓ1-norm penalty. Furthermore, under mild
assumptions, we rigorously prove that the proposed estimator
exhibits oracle statistical properties. Numerical simulations are
provided to support the theoretical findings and validate the
superior performance of the proposed estimator. Due to space
limitation, the proof of the theoretical results of this paper is
given in [41].

II. QUADRATIC MODEL AND NONCONVEX ESTIMATOR

A. The Quadratic Measurement Model

Consider n independent observations {xt}nt=1, each drawn
from a zero-mean random vector x with covariance matrix
Σ∗. Given m sensing vectors {ai}mi=1, the quadratic mea-
surement measurement yi, i = 1, . . . ,m, is given by1

yi =
1

n

n∑
t=1

∣∣a⊤
i xt

∣∣2 + ηi =
〈
aia

⊤
i ,S

〉
+ ηi, (1)

where ⟨·, ·⟩ denotes the inner product and {ηi}mi=1 are additive
measurement noises. This model is simpler to implement and

1Since only finite samples are available, we have S = Σ⋆ +E with E a
bias term.

computationally more efficient than using full-rank measure-
ment matrices with independent and identically distributed
(i.i.d.) entries. Our goal is to recover Σ⋆ from {yi}mi=1.

B. Proposed Nonconvex Estimator

Define y := [y1, · · · , ym]
⊤ and η := [η1, · · · , ηm]

⊤.
The quadratic measurement model in (1) can be compactly
expressed as

y = A⊗vec (S) + η = A (S) + η,

where A⊗ =
[
(a1 ⊗ a1) · · · (am ⊗ am)

]⊤
and vec (S)

denotes the vectorization of S obtained by stacking its
columns, and A : Rd×d 7→ Rm is a linear operator. Given
a collection of m samples {(yi,ai)}mi=1, we consider the
following optimization problem

min
Σ≻0

1

2m
∥y −A (Σ)∥22−τ log detΣ+

∑
i,j

pλ (|Σij |) , (2)

where the first term is an empirical error; the second term is
a log-determinant barrier function with τ > 0 to enforce the
estimator to be strictly positive definite; and the third term
represents a nonconvex regularization term based on function
pλ with λ > 0.

In this paper, we consider a class of nonconvex penalty
functions pλ (·) satisfying the following assumptions.

Assumption 1. The function pλ : R → R satisfies:

• pλ is symmetric around zero with pλ (0) = 0, non-
decreasing on the non-negative, differentiable almost ev-
erywhere on (0,+∞), and sub-differentiable at t = 0;

• 0 ≤ p′λ (t1) ≤ p′λ (t2) ≤ λ for all t1 ≥ t2 ≥ 0 and
lim
t→0+

p′λ (t) = λ;

• There exists an α > 0 such that p′λ (t) = 0 for t ≥ αλ;
Many nonconvex functions have been proven to satisfy

Assumption 1, such as SCAD [38] and MCP [39].

III. OPTIMIZATION ALGORITHM

A. The MM Algorithm Framework

The MM algorithm framework [42] is an iterative optimiza-
tion framework comprising two key steps: the majorization
step and the minimization step. To minimize a real-valued
function F (x), the algorithm proceeds as follows:

• The majorization step: Construct a surrogate function
F̄
(
x | x(k−1)

)
that satisfies{

F̄ (x | x(k−1)) ≥ F (x),

F̄ (x(k−1) | x(k−1)) = F (x(k−1)).

• The minimization step: Minimize the surrogate function
to obtain the next iterate:

x(k) ∈ argmin F̄
(
x | x(k−1)

)
.

This iterative process ensures that F
(
x(k)

)
≤ F

(
x(k−1)

)
at

each step, progressively reducing the value of the objective
function. The algorithm starts from an initial feasible point
x(0) and continues until a convergence criterion is met.
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Algorithm 1: The MM Algorithm for Problem (2).

Input: {yi,ai}mi=1, τ , λ;

1 Initialize Σ̃
(0)

= I;
2 for k = 1, 2, . . . ,K do
3 Λ

(k−1)
ij = p′λ

(∣∣∣Σ̃(k−1)
ij

∣∣∣);

4 obtain Σ̃
(k)

by solving problem (4);
5 end

Output: Σ̃
(K)

B. The Multi-stage Convex Relaxation Algorithm

We now introduce a multi-stage convex relaxation algo-
rithm based on the MM framework to solve problem (2). In
each iteration, we approximate the nonconvex penalty term∑

i,j pλ (Σij) using a weighted ℓ1-norm surrogate. Specif-
ically, for each iteration k (1 ≤ k ≤ K), we consider the
following convex problem:

min
Σ≻0

f (Σ) +
∑
i,j

p′λ

(∣∣∣Σ̂(k−1)
ij

∣∣∣) |Σij | , (3)

where f (Σ) = 1
2m ∥y −A (Σ)∥22 − τ log detΣ and Σ̂

(k)

denotes the optimal solution to the k-th subproblem. This
subproblem can be reformulated compactly as:

min
Σ≻0

f (Σ) + ∥Λ⊙Σ∥1 , (4)

where Λ is the regularization parameter matrix with Λij =
p′λ(|Σ̂ij |) ∈ [0, λ] and ∥·∥1 is the ℓ1 norm. According to the
Karush-Kuhn-Tucker (KKT) conditions, the optimal solution
Σ̂ to each problem (4) satisfies the first-order optimal condi-
tion:

∇f
(
Σ̂
)
+Λ⊙ Ξ̂ = 0, with Ξ̂ ∈ ∂∥Σ̂∥1,

where ∇f (Σ) = − 1
mA∗ (y −A (Σ)) − τΣ−1, with A∗ (·)

the conjugate operator of A (·). Since problem (4) lacks a
closed-form solution, we seek an ε-optimal solution within a
pre-specified tolerance, defined in Definition 2.

Definition 2. Let ε denote the tolerance level. Σ̃
(k)

is con-
sidered an ε-optimal solution for the k-th subproblem (4) if
the condition ω(Σ̃

(k)
) ≤ ε is satisfied, with

ω(Σ̃
(k)

) = min
Ξ∈∂∥Σ(k)∥

1

∥∇f(Σ(k)) +Λ(k−1) ⊙Ξ∥max,

where ∥ · ∥max denotes the maximum absolute value of all
elements in the matrix and ∂ is the subgradient operator.

To obtain Σ̃
(k)

by solving (4), practicals algorithms like
proximal gradient [43] and proximal Newton [44] can be
used. The proposed multi-stage convex relaxation algorithm is
outlined in Algorithm 1. The initialization is set as Σ̃

(0)
= I

for simplicity.

IV. STATISTICAL ANALYSIS

In this section, we present the theoretical findings. We begin
with several essential assumptions.

A. Assumptions

We impose specific conditions on the sensing vectors
{ai}mi=1 and the measurement noise {ηi}mi=1.

Assumption 3. The sensing vectors {ai}mi=1 are i.i.d. sub-
Gaussian random variables with zero mean and identity co-
variance.

Assumption 3 is more general than those employed in
existing studies (see, e.g., [25], [45]), as it encompasses a
broader class of sub-Gaussian distributions for the sensing
vectors.

Assumption 4. The measurement noises {ηi}mi=1 are i.i.d. sub-
exponential random variables with mean 0 and variance proxy
σ2.

Assumption 4 generalizes the noise models typically em-
ployed in the literature (see, e.g., [25], [45]) by allowing
sub-exponential rather than sub-Gaussian or bounded noise.
Next, we introduce several assumptions related to Σ⋆. Define
the support set of Σ⋆ as S =

{
(i, j) | Σ⋆

ij ̸= 0
}

, with s
representing its cardinality, i.e, s = |S|.

Assumption 5. The true covariance matrix Σ⋆ satisfies

0 <
1

κ
≤ λmin (Σ

⋆) ≤ λmax (Σ
⋆) ≤ κ < ∞,

for some constant κ ≥ 1. Here, λmin (Σ
⋆) and λmax (Σ

⋆)
denote the minimum and maximum eigenvalues of Σ⋆, re-
spectively.

Assumption 5 is a standard condition in the study of sparse
covariance matrices estimation [22], [32], [46], which ensures
that Σ⋆ is well-conditioned.

Assumption 6. There exist universal constants α and µ such
that

∥Σ⋆
S∥min = min

(i,j)∈S

∣∣Σ⋆
ij

∣∣ ≥ (α+ µ)λ,

where α is from Assumption 1, and µ ∈ (0, α) satisfies
p′λ (µλ) ≥ λ

2 .

Assumption 6, referred to as the minimum signal strength
condition, is prevalent in the analysis of nonconvex penalized
regression problems [38], [40], [47]. This condition is rela-
tively mild since the tuning parameter λ is typically chosen
to be on the order of

√
log d
mn , which can be very small as the

number of measurements m and sample size n increase.
We further impose two conditions on the function f over a

restricted set, known respectively as restricted strong convexity
(RSC) and restricted strong smoothness (RSS). Define a local
cone around Σ⋆:

B(Σ⋆, r) = {Σ ≻ 0 | ∥Σ −Σ⋆∥F ≤ r} .
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Assumption 7 (Restricted Strong Convexity (RSC)). For the
function f , there exists some ρ− > 0 such that, for all ∆ ∈
B
(
Σ⋆, ρ−

4τκ

)
,

f (Σ +∆) ≥ f (Σ) + ⟨∇f (Σ) ,∆⟩+ ρ−

2
∥∆∥F .

Assumption 8 (Restricted Strong Smoothness (RSS)). For the
function f , there exists some ∞ > ρ+ > ρ− such that, for all
∆ ∈ B

(
Σ⋆, ρ−

4τκ

)
,

f (Σ +∆) ≤ f (Σ) + ⟨∇f (Σ) ,∆⟩+ ρ+

2
∥∆∥F .

Assumption 3 asserts that each row of the sensing matrix
A⊗ comprises i.i.d. sub-exponential random variables. Con-
sequently, A⊗ exhibits both bounded maximum and strictly
positive minimum sparse eigenvalues within the local cone
B
(
Σ⋆, ρ−

4τκ

)
. Specifically, it can be shown that provided that

the number of measurements satisfies m = O
(
s log2 (d/s)

)
,

Assumptions 7 and 8 hold with overwhelming probability at
least 1 − c1 exp (−c2

√
m) for some c1, c2 > 0 over the set

B
(
Σ⋆, ρ−

4τκ

)
[41], [48].

B. Statistical Guarantees and Consequences

We now present the main theorem, which establishes the
contraction property of the solution sequence {Σ̃(k)}k≥1.

Theorem 9 (Contraction Property). Suppose Assumptions 1 ∼
8 hold. Then with probability exceeding 1− c1 exp (−c2

√
m)

for some c1, c2 > 0, the ε-optimal solution Σ̃
(k)

from
Algorithm 1 is bounded by:∥∥∥Σ̃(k) −Σ⋆

∥∥∥
F
≤ 1

ρ−

∥(∇f (Σ⋆))S∥F︸ ︷︷ ︸
oracle rate

+ ε
√
s︸︷︷︸

optimization error


+ δ

∥∥∥Σ̃(k−1) −Σ⋆
∥∥∥
F︸ ︷︷ ︸

contraction

,

(5)
for 1 ≤ k ≤ K, where δ ∈ (0, 1) is the contraction factor,
provided that m = O

(
(s+ s⋄) log2 (d/ (s+ s⋄))

)
with s⋄ ≥

βs for some universal constant β.

Remark 10. Theorem 9 provides a detailed characterization of
the estimation error between the ε-optimal solution Σ̃

(k)
and

the ground truth Σ⋆. This Frobenius norm error is composed
of three components: (i) the statistical error characterized
by the oracle rate2, (ii) the optimization error, and (iii) a
contraction term.

Next, we give the explicit statistical rate of convergence
under the sub-Gaussian design.

Corollary 11. Let x be a sub-Gaussian random vector with
zero mean and covariance Σ⋆ and {xi}ni=1 be a collection

2The oracle estimator Σ̂
O

is defined with prior knowledge of the true
support set S, and is given by Σ̂

O
= arg min

ΣS=0
f (Σ).

of i.i.d. samples drawn from x. Suppose Assumptions 1 ∼ 8
hold. If

λ ≍
√

log d

mn
, τ ≲

√
1

mn

∥∥∥(Σ⋆)
−1

∥∥∥−1

max
, ε ≲

√
1

mn
,

then the ε-optimal solution Σ̃
(1)

satisfies∥∥∥Σ̃(1) −Σ⋆
∥∥∥
F
≲

√
s log d

mn

with high probability.

Corollary 12. Let x be a sub-Gaussian random vector with
mean zero and covariance Σ⋆ and {xi}ni=1 be a collection
of i.i.d. samples drawn from x. Suppose Assumptions 1 ∼ 8
hold. If

λ ≍
√

log d

mn
, τ ≲

√
1

mn

∥∥∥(Σ⋆)
−1

∥∥∥−1

max
, ε ≲

√
1

mn

and K ≳ log (λ
√
mn) ≳ log log d, then the ε-optimal solution

Σ̃
(K)

satisfies∥∥∥Σ̃(K) −Σ⋆
∥∥∥
F
= Op

(√
s

mn

)
with high probability.

Corollary 11 and Corollary 12 directly follow from The-
orem 9. These results indicate that to achieve the oracle
rate, the optimization error ε must be chosen such that

ε ≤ min

(
∥(∇f(Σ⋆))S∥F√

s
, λ
8

)
, and the parameter K must be

sufficiently large. Consequently, under minimal assumptions,
solving no more than approximately log log d convex problems
suffices to achieve the oracle rate

√
s

mn .

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the practical performance of the
proposed estimator and algorithm. We adopt the MCP, defined
as

pλ (t) := sign (t)λ ·
∫ |t|

0

(
1− z

λb

)
+
dz,

with b = 2 across all trials. The tuning parameters λ and τ are
optimized through five-fold cross-validation. Σ⋆ is generated
using the “sprandsym” built-in function in MATLAB with
s non-zero entries. We sample n independent data points from
the multivariate normal distribution N (0,Σ⋆). ηi’s are drawn
from a sub-exponential distribution scaled by parameter γ, i.e.,
γ ·N (0, 1). The numerical performance is measured using the
Frobenius Absolute Error (FAE) ∥Σ̂−Σ⋆∥F and the Frobenius

Relative Error (FRE)
∥Σ̂−Σ⋆∥

F

∥Σ⋆∥F
. All results are averaged on

100 Monte Carlo trials.
Fig. 1 presents the FRE by varying sparsity (s ∈

{80, 120, 200, 240}) with d = 100. It shows that increasing the
number of measurements m or samples n reduces FRE. Fig. 2
depicts the oracle rate for the “sprandsym” matrix under
different dimensions (d ∈ {80, 100}). The observed estimation
errors grow approximately linearly with the theoretical rate,
which validates our theoretical guarantee. We further examine
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Fig. 1. The FRE of the estimated covariance matrices is examined in three distinct scenarios: (a) the true covariance without added noise; (b) the sample
covariance with a noise parameter of γ = 0.1 and n = 50; (c) the sample covariance with a noise parameter of γ = 0.1 and m = 300;
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Fig. 2. The oracle rate of “sprandsym” Matrix
with s = 120 and γ = 0.1.
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Fig. 3. The FRE of the estimated covariance
matrices for different noise levels when s = 300.
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Fig. 4. The FRE of the estimated covariance
matrices for different sparsity levels with noise level
γ = 10−1(ℓ1 v.s. MCP).
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Fig. 5. The rate of successful covariance reconstruction when d = 100.

the impact of noise intensity by evaluating the estimator for
s = 300 under different noise levels. As illustrated in Fig. 3,
the influence of noise decreases by increasing m, resulting
in improved recovery precision. Notably, the noise intensity
exerts a direct and substantial effect on the performance of the
oracle estimator. Furthermore, we conduct a comparative anal-
ysis between our proposed estimator and the estimator based
on the ℓ1 norm [25], as depicted in Fig. 4. The comparison
reveals that the proposed estimator consistently outperforms

the ℓ1-norm-based estimator regarding the Frobenius norm
error. These findings support our theoretical findings. We also
evaluate the empirical probability of successful recovery using
a color-coded matrix in Fig. 5. To minimize the impact of
sample size n, we directly sense the true covariance matrix
Σ⋆. A recovery is considered successful if the solution Σ̂

satisfies ∥Σ̂−Σ⋆∥F

∥Σ⋆∥F
≤ 10−3.

VI. CONCLUSION AND DISCUSSION

In this paper, we have investigated the problem of large
sparse covariance matrix estimation based on quadratic mea-
surements, which is relevant for scenarios with stringent pro-
cessing and memory constraints, such as real-time data acqui-
sition systems. Our results demonstrate that sparse covariance
matrices can be accurately reconstructed using a minimal num-
ber of quadratic measurements, thereby significantly reducing
storage requirements. We provide numerical experiments to
substantiate our conclusions. Notably, our proposed estimators
exhibit superior statistical convergence rates compared to ex-
isting methodologies, underscoring their practical efficacy and
potential in real-world scenarios. Furthermore, it is noteworthy
to mention that our approach is extendable to covariance
sensing problems based on the bilinear sampling model yi =
⟨aib

⊤
i ,S⟩+ ηi, where ai and bi are two independent sensing

vectors.
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