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Abstract

Covariance matrix estimation is a funda-
mental problem in multivariate data analy-
sis, which becomes particularly challenging
in high-dimensional settings due to the curse
of dimensionality. To enhance estimation ac-
curacy, structural regularization is often im-
posed on the precision matrix (the inverse co-
variance matrix) for covariance selection. In
this paper, we study covariance selection in
a distributed setting, where data is spread
across a network of agents. We formulate
the problem as a Gaussian maximum like-
lihood estimation problem with structural
penalties and propose a mnovel algorithmic
framework called NetGGM. Unlike existing
methods that rely on a central coordina-
tor, NetGGM operates in a fully decentral-
ized manner with low computational com-
plexity. We provide theoretical guarantees
showing that NetGGM converges linearly to
the global optimum while ensuring consensus
among agents. Numerical experiments vali-
date its convergence properties and demon-
strate that it outperforms state-of-the-art
methods in precision matrix estimation.

1 INTRODUCTION

Estimating the covariance matrix is a fundamental
task across various fields related to data analysis,
including machine learning (Jolliffe, 2002), finance
(Markowitz, 1952), and biology (Schéfer and Strim-
mer, 2005). In high-dimensional settings, where the
number of samples is comparable to or smaller than
the number of dimensions, accurate estimation of the
covariance matrix becomes particularly challenging. A
widely adopted approach to address this issue is covari-
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ance selection (Dempster, 1972), which imposes struc-
tural constraints on the precision matrix (the inverse
covariance matrix) to improve estimation accuracy.

Under the Gaussian assumption, the off-diagonal el-
ements of the precision matrix represent conditional
dependencies between variables, aligning precision es-
timation with the construction of Gaussian graphi-
cal models (GGM) (Lauritzen, 1996; Li and Zhao,
2024). A commonly used structural assumption in
GGM is sparsity, where many off-diagonal elements
in the precision matrix are zero, leading to sparse
GGM. This assumption reduces the number of param-
eters to estimate, thereby improving accuracy. A well-
established approach for estimating sparse GGM is the
{1-penalized Gaussian maximum likelihood estimation
(Banerjee et al., 2008; Friedman et al., 2008). Beyond
the lasso penalty (Tibshirani, 1996), various regular-
ization techniques, including group lasso (Marlin and
Murphy, 2009), smoothly clipped absolute deviation
(Fan et al., 2009), ridge penalty (Kuismin et al., 2017),
elastic net (Ryali et al., 2012), multivariate total pos-
itivity of order 2 (MTP3) (Karlin and Rinott, 1983),
and sorted ¢;-penalized estimation (SLOPE) (Mazza-
Anthony et al., 2020) have also been applied within
the maximum likelihood estimation framework.

In modern applications, data is often distributed
across multiple agents, such as geographically dis-
persed sensors, satellites in different orbits, or insti-
tutions spanning multiple continents. Due to con-
straints like communication and storage overhead, pri-
vacy concerns, and regulatory policies, transferring
distributed data to a central processor can be ineffi-
cient or even infeasible. For example, in disease de-
tection studies, hospitals may seek to collaborate to
increase the sample size, but privacy regulations pre-
vent the direct sharing of the electronic health records
of patients (Warnat-Herresthal et al., 2021). This
highlights the urgent need for decentralized estimation
methods (Maros and Scutari, 2022; Ji et al., 2023; Xia
et al., 2024) that enable network-wide analysis while
preserving data privacy. This paper investigates the
problem of precision matrix estimation over a net-
work, where samples are distributed across multiple
agents, each observing all variables. Several studies
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have explored precision matrix estimation over dis-
tributed samples (Arroyo and Hou, 2016; Nezakati and
Pircalabelu, 2023; Wang and Cui, 2021; Dong and Liu,
2024). However, these methods either rely on divide-
and-conquer strategies or require a central node to it-
eratively aggregate information, preventing them from
operating in a fully decentralized manner.

In this paper, we address the problem of high-
dimensional decentralized GGM estimation, i.e., struc-
tured precision matrix estimation. This problem
presents several challenges. A primary difficulty in dis-
tributed estimation is that each agent lacks access to
data from other agents. Additionally, although the
problem is convex, the likelihood function is neither
Lipschitz smooth nor strongly convex over the set of
positive definite matrices, further complicating the es-
timation process. The main contributions of this paper
are summarized as follows:

e We propose NetGGM, a decentralized single-loop
algorithm based on proximal gradient descent
(Beck, 2017) and gradient tracking techniques
(Di Lorenzo and Scutari, 2016), to solve the struc-
tured GGM estimation problem. In each itera-
tion, each agent updates its local estimate via a
lightweight soft-thresholding operation while in-
tegrating information from neighboring agents.
Compared to existing distributed precision ma-
trix estimation methods (Arroyo and Hou, 2016;
Wang and Cui, 2021; Nezakati and Pircalabelu,
2023; Dong and Liu, 2024), NetGGM eliminates
the reliance on a central node and provides theo-
retical guarantees of positive definiteness.

e We prove that NetGGM achieves both linear con-
vergence and consensus starting from any positive
definite initialization. This resolves a key chal-
lenge in decentralized settings, where agents lack
global information to set an initialization within a
specific range, as required in centralized proximal
gradient methods for GGM (Rolfs et al., 2012).
Furthermore, by carefully selecting the algorithm
parameters, we ensure that the local estimates re-
main positive definite at each iteration. This is
achieved without the need to explicitly enforce a
positive definiteness constraint, which would oth-
erwise lead to proximal steps that lack closed-form
solutions.

e We discuss the applicability of NetGGM to a
broader class of GGM problems and demonstrate
that it maintains linear convergence and consen-
sus, even when the proximal steps only have in-
exact solutions.

e Numerical experiments confirm the linear conver-
gence and consensus of NetGGM and demonstrate

its superior performance compared to state-of-
the-art methods in precision matrix estimation.

2 RELATED WORK

GGM estimation. FEstimation methods for sparse
GGMs have been developed for both primal and dual
formulations. For the primal problems, several algo-
rithms have been proposed, including interior point
methods (Yuan and Lin, 2007), alternating-direction
methods (Yuan, 2012), and block coordinate descent
methods (Mazumder and Agarwal, 2011; Mazumder
and Hastie, 2012). However, many of these approaches
lack theoretical convergence guarantees. Scheinberg
et al. (2010) introduced a method based on an al-
ternating linearization technique and established sub-
linear convergence. The QUIC algorithm, a second-
order proximal point method, was proposed by Hsieh
et al. (2011) and exhibits local superlinear conver-
gence. The most relevant approach to our work is
the graphical iterative shrinkage thresholding algo-
rithm (G-ISTA) (Rolfs et al., 2012), which is based
on the proximal gradient descent framework (Beck,
2017). It has been proven to converge linearly to
the global optimum, provided that the initialization
lies within a specified set. For dual methods, block
coordinate descent algorithms (Banerjee et al., 2008;
Friedman et al., 2008), Nesterov’s smooth approxima-
tion framework (d’Aspremont et al., 2008; Lu, 20009,
2010), and proximal gradient descent (Dalal and Ra-
jaratnam, 2017) have been employed. Additionally,
from a primal-dual perspective, the alternating direc-
tion method of multipliers (ADMM) has also been ap-
plied (Boyd et al., 2011). For a comprehensive review,
see (Chen, 2024). Furthermore, many studies have ex-
tended these algorithms to other GGM models. For in-
stance, block coordinate descent methods (Slawski and
Hein, 2015; Lauritzen et al., 2019) and quasi-Newton
methods (Cai et al., 2024) have been employed to es-
timate GGMs under MTP5 constraints, while ADMM
has been adapted to GGMs with SLOPE regular-
ization (Defazio and Caetano, 2012; Mazza-Anthony
et al., 2020).

Distributed GGM estimation. In cases where
samples are distributed across multiple agents, re-
search on decentralized methods for precision matrix
estimation remains limited. In contrast, when a net-
work includes a centralized node, a common approach
is the divide-and-conquer strategy, where each agent
computes a local estimate from its data and sends it to
the central node for aggregation. In Arroyo and Hou
(2016), each agent applies the debiased ¢;-penalized
maximum likelihood estimation (Jankovd and van de
Geer, 2015) to obtain local estimates, which are then
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averaged by the central node. Nezakati and Pircala-
belu (2023) extended this approach by introducing an
element-wise weighted average of local estimates to ac-
count for varying sample sizes across nodes. However,
these divide-and-conquer methods do not guarantee
the positive definiteness of the estimates. Additionally,
some studies focus on cases where variables, rather
than samples, are distributed across agents (Wiesel
and Hero, 2011; Meng et al., 2014; Tavassolipour et al.,
2019), which falls beyond the scope of this paper.

GGM estimation with other loss functions.
Several other centralized methods have been proposed
for GGM estimation, including the D-trace method
(Zhang and Zou, 2014), column-by-column estima-
tion (Meinshausen and Biihlmann, 2006), and lin-
ear programming-based approaches (Yuan, 2010; Cai
et al., 2011; Liu and Luo, 2015). Wang and Cui (2021)
extended the D-trace loss to distributed settings using
a divide-and-conquer approach, while Dong and Liu
(2024) introduced an alternating block-based gradient
descent method to iteratively solve the ¢;-penalized
D-trace loss over networks. While the latter method
moves beyond the divide-and-conquer framework, it
still lacks theoretical guarantees for convergence and
positive definiteness.

3 PROBLEM FORMULATION

In this section, we present the assumptions regarding
the network and the problem setup for GGM estima-
tion. We first discuss high-dimensional sparse GGM
estimation and then extend the framework to other
high-dimensional structured GGM estimation prob-
lems.

3.1 Network Topology

The network is modeled as a time-invariant undirected
graph G = (V,€), where V is the set of vertices
V = {1,...,m} corresponding to the m agents, and
€ represents the communication links among agents.
We make the following standard assumption regard-
ing the connectivity of the graph.

Assumption 1. The graph G is connected.

The neighborhood of agent i is defined as N; =
{j | @,j4) € E} U {i}. Define the weight matrix asso-
ciated with G as W € R™*™ where its (4, j)-th entry
is

if j e N,

Wij € [, 1],
otherwise,

Wij = 0,

with x € (0,1) a constant. Throughout this paper, we
assume that W fulfills the following assumption.

Assumption 2. W is doubly stochastic, i.e., W1 =1
and 1TW =1T.

3.2 The Optimization Problem

For a zero-mean random vector x € R?% we as-
sume that agent ¢, for ¢ = 1,2,...,m, possesses
n; independent and identically distributed samples
X;1,X:2, - .., Xin;. We are interested in estimating the
precision matrix © given all the samples in the net-
work, defined as the solution to the following problem:

minimize U (@) = fi(®)+X|O|,,
e U©) =3 f@ A0,
—_———
—F(©)

where the local likelihood function is

1:(8) = 5 (~logdet (©) + (S,,0))

with N = > n; the total sample size, and S; =
n% Z?:l xijx;-g the sample covariance matrix of agent
i. Problem (1) has been proven to have a unique so-
lution (Banerjee et al., 2008; Lu, 2009). Furthermore,
since the objective function is convex, we can establish
the following lemma.

Lemma 1. The objective function U is coercive
over S‘Lr, i.e., limy  (@—oU(®) = +oo and
llmHQHF*}+OO U(@) = +00.

Since each data set is local, agent ¢ can only access
fi and cannot solve (1) independently. Our goal is
to design an algorithm that computes the optimal @
without exchanging data or local covariance matrices.

4 ALGORITHM DESIGN

We first briefly introduce a single-loop proximal
gradient-type algorithm (Rolfs et al., 2012) for solv-
ing the sparse GGM problem in (1) in a central-
ized manner. Then, we propose a decentralized al-
gorithm termed Network Gaussian graphical models
(NetGGM) to solve the problem over networks.

4.1 Proximal Gradient Algorithm for Sparse
GGM

In the centralized setting, a standard approach to solv-
ing (1) is via the proximal gradient method, as sum-
marized in Algorithm 1. At iteration k, it updates
the estimate by minimizing a proximal regularized lin-
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earization of F':
ek+l) —

e ind F(00) + (vF (6%) .0 - 0®)
+le-e®[ +atelf. @

where v > 0 is the step size. It is proven that when the
step size is sufficiently small, solving (2) is equivalent
to a soft thresholding operation (Rolfs et al., 2012):

e+ —gT, (@“‘) . (s - (@“f))l)) ;
i Y

where S = 37" | %S, is the global sample covariance
matrix. For any X € R¥? and w > 0, the (4,75)-th

entry of ST, (X) is defined as
STUJ (X)z_; = Sign (le) max {|X1]| — W, O} .

4.2 Proposed Algorithm: NetGGM

However, in the distributed setting, due to the lack of
global information, agents cannot locally solve prob-
lem (2). To address this, we propose NetGGM to
solve problem (1) over the network. NetGGM ex-
tends the proximal gradient algorithm to the dis-
tributed network setting using gradient tracking tech-
niques (Di Lorenzo and Scutari, 2016). Gradient track-
ing is a standard technique for solving decentralized
optimization problems, enabling each agent to itera-
tively update a local auxiliary variable by integrating
information from its neighbors, thereby tracking the
global gradient of the problem. NetGGM consists of
two main steps: local optimization and information
mixing.

Local optimization. For agent i, we define ©;
as a local estimator for the optimization vari-
able ® and Y,; as a local auxiliary variable that
aims to asymptotically track = 3" Vf; (©;). De-

note ") [@W;@é’“;...;@%’ and YR =
ng);Yék); e ;Ygf) as the matrices of local vari-

ables of all agents. We decompose F' into two parts:
fiand > ot f;, and separately approximate these two
terms. At iteration k, the surrogate function of F' at
agent 7 is constructed as

ﬁ‘i(k) (©;) =f; ((—)Ek)) + <Vfi (@Z(»k)> , O — ng)>
(a)
+ <mY£k) - Vi (61(“) ,©; — @z(‘k)>

(b)
ool
o 61' -0, )
+ 2 H ' tllr (3)

Algorithm 1 Sparse GGM via proximal gradient

given 0 ~ 0,v>0,k=0
while not converge, do

-1
(k+1) _ (k) 1 _ (k)
® _ST$(® —7<s (™) >)

k=k+1
end while
return ©")

Algorithm 2 NetGGM

—1
given @Z(.O) >0, YEO) = (Si - (@Eo)) ), W,

7>0,a€ (0,1, k=0
while not converge, each agent ¢ do
Local optimization:

o) —gr, (0 - zy)
Information mixTing:
~ 1 .
ok _ oM 4 a <®i(k+2) B @Z(p) ’

k+1 m ~ (k)
G')E ) = Ej:l Wij@j )

~ -1 —1
v —y® (@§’“’) - (@5’““)) ,
k+1 m (k
Yz( = Zj:l Wing(' )7
k=k+1

end while
return ©%)

where 7 > 0 is a parameter. Function F,isa strongly
convex function with constant 7 where terms (a)
and (b) represent the linearization of f; and ., f;

around @gk), respectively. Then, the local proximal
step for agent 4 is given as
®(k+%)

K3

= arg min {7V (@) + A, }. ()
Due to the positive definiteness constraint and the ¢4
penalty, the subproblem (4) lacks a closed-form solu-
tion. To address this challenge, we propose to discard
the positive definite constraint and consequently, up-
dating ©; can be done using a single soft-thresholding
operation

k+i m
95 *3) _gr, (G)Z(k) _ 7Y§k)) .
T T
As to be elaborated in the next section, we theoreti-
cally prove that as long as the parameter 7 is appro-
k41
priately chosen, @5 +3) > 0 is automatically satisfied
for any k € N. In this way, NetGGM avoids an extra
computation loop for solving (4) with an iterative algo-
rithm, which is typically computationally demanding.

Information mixing. After the local optimization,
each agent 7 collects information from its neighbors



Wenfu Xia, Fengpei Li,

Ying Sun, Ziping Zhao

and updates both ®; and Y. It first computes

o ot o (6t o).
where a € (0,1] is a constant step size. It then re-
ceives {é;k)} N from its neighbors and applies the
JEN;

consensus-based step to enforce asymptotic agreement
among O, given as follows:

m
®§k+1) _ Z Wijég-k)-

J=1

Next, agent ¢ updates its local gradient estimator ac-
cording to

Y=y 4 (0 — (o)

exchanges it with its neighbors, and updates Y; with

(k1) _ N1 (k)
Y =N w v
=1

NetGGM iteratively performs the above operations
until convergence. We summarize it as Algorithm 2.

5 CONVERGENCE ANALYSIS

In this section, we prove the linear convergence of
NetGGM. One of the challenges is that function F' does
not exhibit global Lipschitz smoothness and strong
convexity over ® > 0. This can be seen from the
Hessian V2F (@) = ©® ' ® ® ', whose eigenvalues
lack positive upper and lower bounds. Moreover, the
local optimization updates in NetGGM do not explic-
itly enforce positive definiteness constraints. To ad-
dress these difficulties, our analysis proceeds in two
steps: (1) choosing appropriate parameters and uti-
lizing the coercivity of U to guarantee local Lipschitz
smoothness and strong convexity; (2) using this local
smoothness and strong convexity to establish the lin-
ear convergence of NetGGM.

Local Properties. Our analysis hinges on the po-

tential function V that combines the objective function
with the consensus error as follows:

v (e, y) - Em: v(e®)
i=1
2

m 2 m
oM _ c:)(’“)H b HY(“ 73?(’“)”
+a; H v F+ ; v F

consensus error

where @) = % >ty Gz('k)v Y® = % >ty Yz(k)a
and a,b > 0. The function V is coercive, which follows
from Lemma 1 and the fact that the consensus error is
non-negative. For any initialization e » 0, we can
define a level set

A= {(@,Y) IV (O,Y)<V (@<0>,Y<0>)}.

Since V is coercive, there exist constants Rg > Rg >0
and Ry > 0 such that for every (0©,Y) € A we have
Rl = ©; < Rel and —RyI XY, — Y =< Ryl for
1=1,2,...,m.

Then, by carefully selecting parameters 7 and «,

we ensure that every (Q(k),Y(k)), k € N obtained

by NetGGM remain within A, thereby achieving lo-
cal Lipschitz smoothness and strong convexity while
maintaining the positive definiteness of the estimate.
We prove this conclusion by induction, as shown in
Theorem 3.

Theorem 3. Assume that Assumptions 1 and 2 are
satisfied. Based on Lemma 1, when T > 7, and o €

(0,a4], for {Q(k),Y(k)}k N obtained by NetGGM, we

have

% <@(k+1)’ Y(k+1)> <

S

m 2

v (@)(k),Y(k)) -5y

i=1

elFt) _ g

F

where 71, &1, and 8 are positive universal constants.

Utilizing Theorem 3 and iterating to k = 0, we have

v (G(k),Y(k)) <..<V (6(0),Y(0)) .

Therefore, <®(k)7Y(k)) € A and all the ®*) are posi-

tive definite for every iteration k € N. This conclusion
leads to the local Lipschitz smoothness and strong con-
vexity at each iteration.

Note that Lu (2009) proves that the unique solution
to problem (1) lies in a convex subset of S¢ | , which is
defined based on the global sample covariance matrix
S, the dimension d, and the thresholding parameter
A. In the centralized case, the proximal gradient algo-
rithm has been shown to ensure that, as long as the
initialization is within this subset and the step size
is sufficiently small, the resulting sequence remains in
the subset (Rolfs et al., 2012). However, in the net-
work setting, since each agent lacks the knowledge of S,
we cannot guarantee that all ©© lie within this sub-
set. In contrast, in our proof, the set A is constructed
based on ©©) ensuring that for any positive definite
initialization, each update of NetGGM remains within
set A, thereby ensuring local Lipschitz smoothness and
strong convexity throughout the iterations.
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Linear Convergence. Based on the local Lipschitz
smoothness and strong convexity, we establish the fol-
lowing result.

Theorem 4. In the same setting as Theorem 3, if the
proxzimal parameter is sufficiently large satisfying T >

max {11, Ei?_)} and the step size satisfies o € (0,a4]

for some constant T, and &1, we have

m 2 m 2
el <o ol
ZHQl GHF_72 ® © F
i=1 =1
m B 2 m B 2
+ G/Z Hegk) _ @(k)H n b/z HYEk) _ Y(k)H ,
F F
i=1 i=1

where o', > 0, and v € (0,1) are universal constants.

Theorem 4 illustrates the linear convergence of
NetGGM for the consensus error. Then, we bound the
consensus error and establish the R-linear convergence
of NetGGM.

Theorem 5. In the same setting as Theorem /, if the
proximal parameter satisfies T > max {11, R%} and
g

the step size v satisfies a € (0, awn), we have
Zm " _ ol K
F
i=1

for all k € N, where ag, A > 0, and z € (0,1) are con-
stants depend on the data, the initialization of @(0),
and the network connectivity.

Theorem 5 shows that NetGGM converges linearly to
the global optimum of problem (1), which indicates
that NetGGM can achieve the same estimation ac-
curacy as the centralized estimator (Rothman et al.,
2008; Ravikumar et al., 2011).

Complexity. According to Theorem 5, NetGGM
converges within O (log (%)) iterations to reach an er-
ror less than € > 0. In each iteration, the complexity
bottleneck is the computation of ® !, which requires
O(d?) operations. With m agents performing this
computation in parallel, the overall time complexity
for NetGGM to converge is O(md?®log(1)). Each it-
eration involves exchanging O(|€|d?) units of informa-
tion, where |€| stands for the number of edges. Thus,
the total communication complexity for NetGGM to
converge is O(|€|d?log(1)).

6 OTHER REGULARIZERS

In addition to the ¢; penalty considered in Section 3.2,
various other regularization terms can be integrated
into problem (1) to induce various structures. In this

section, we illustrate how the NetGGM algorithm can
be applied to more general GGM estimation problems
by considering the following formulation:

miimize F(®)+G(09), (5)
where F' is defined in (1), and G is a generic convex
regularization term. To solve (5) using NetGGM, the

local optimization step in (4) is replaced by the follow-
ing one:

ok

K3

) _ arg i {F"@)+c@)}, (©

where ﬁ'i(k) is defined in (3).

In practice, G can take many different possible forms.
Below, we provide some examples. When prior knowl-
edge about the sparsity pattern is available, a weighted
{1-penalty can be used to encourage certain elements
to approach zero (Li and Jackson, 2015). If the spar-
sity pattern is fully known, constraints can be directly
imposed to ensure the estimator matches this pattern
(Egilmez et al., 2017). When the dimensionality ex-
ceeds the sample size, the £1-penalty can estimate at
most as many edges as there are available samples
(Zou and Hastie, 2005). In such cases, the elastic net
penalty can help overcome this limitation by allowing
for denser solutions (Ryali et al., 2012). The SLOPE
penalty can be employed to achieve graph estimation
with a controlled false discovery rate (Mazza-Anthony
et al., 2020). Additionally, in fields such as finance,
where non-negative correlations exist, the MTP5 con-
straint (Karlin and Rinott, 1983) can be applied. With
the above possible penalty function, the proximal step
(6) has a closed-form solution like the ¢;-norm case.

It is worth noting that there exist regularization
terms G that prevent subproblems (6) from having
closed-form solutions. For example, in some graph-
ical model estimation problems, it may be desirable
to select edges as a group. Given a set of such groups
Gi,....Gr C{1,..., d}Q, the group lasso penalty (Mar-
lin and Murphy, 2009)

2

K
G(©) = AZ 1Gi1* [|(©)g,|

can achieve this goal, where |G;| is the number of el-
ements in G;, and (©)g, represents the vector of el-
ements corresponding to G;. However, when these
groups overlap with each other, i.e., when elements ap-
pear in multiple groups, the subproblem (6) no longer
admits a closed-form solution. In this case, we may

t+3) ¢ (6)

%

only obtain an e(®-optimal solution ©
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Figure 1: Linear convergence of NetGGM over different networks for two models. (m = 20 and N = 25)

from an iterative algorithm, which satisfies

F® (@5“5)) +a (@f’”%)) <

£ (@(k“‘%)*) +q (@(k"‘%)*) +e®)

where ¢®) >0, k € N.

In this case, we can prove that NetGGM still exhibits
R-linear convergence, as described in Theorem 6.

Theorem 6. Assume that Assumptions 1 and 2 are
satisfied. Assume that the error %) decay at least at
an exponential rate (i.e., there exist constants ¢ > 0
and & € (0,1) such that e*) < &%) and satisfies e*) <

~_1)?R2
%- For > 1, and a € (0,a3), we have

< (A" + Be) 2

> et -e, <

for all k € N, where 74,03, A’,B > 0, and 2’ € (0,1)
are constants depend on the data, the initialization of
6(0), and the network connectivity.

7 NUMERICAL SIMULATIONS

In this section, we demonstrate the convergence of
NetGGM and assess its estimation performance on
both synthetic data and real data from Parkinson’s
disease. We use NetGGM to solve sparse GGM over
networks and select the shrinkage parameter \ of for
all cases by five-fold cross-validation. The parameters
7 and a were tuned to ensure the convergence of the al-
gorithm. Empirically, we choose ae = 0.1 and choose 7
as n* where 7 > 1 and ¢ € N is the smallest number en-
suring the convergence of NetGGM. We compare the
performance of NetGGM with G-ISTA (Rolfs et al.,
2012) and two existing divide-and-conquer based es-
timators D&C I (Arroyo and Hou, 2016) and D&C
IT (Nezakati and Pircalabelu, 2023). Note that the

baselines are not decentralized methods, since G-ISTA
solves sparse GGM in centralized settings while D&C
I and D&C 1I need a central node to aggregate infor-
mation. The parameters for these baselines are ad-
justed as described in the original references. All ap-
proaches are implemented in MATLAB without any
code in compiled languages on a 3.3 GHz 12-core In-
tel Xeon W processor. The weight matrix W for each
simulation is set according to the Metropolis weights
(Xiao et al., 2005)

i#jand (i,5) €
i#jand (i,j) ¢ &,
=7,

1
max(d;,d;)+1?
Wi = 07

Zl;ﬁz

where d; is the degree of agent 1.

il

7.1 Synthetic Data

In the synthetic data simulation, we consider a d-
variate Gaussian distribution A/ (O, (@*)71) with d =

50. N samples are drawn from the Gaussian distribu-
tion and randomly distributed to the m agents. We
consider two precision matrix models (Bien and Tib-
shirani, 2011):

e Cliques model: ©* = blkdiag (@(y),...,0)),
where the off-diagonal elements of the sub-
matrices ©(y), ..., O s) are set to +1;

e Random model: Each off-diagonal element is set
to £1 with a probability of 0.05.

For these two models, the diagonal elements are set
to a constant which makes the condition number of
©” equal to d as in (Rothman et al., 2008). The
performance of NetGGM is tested over four different
connected time-invariant undirected networks: three
Erd6s—Rényi models (Erd6s and Rényi, 1959) (each
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Table 1: Average and variance (between parentheses) of performance of NetGGM and baselines.

Cliques model Methods NMSE Positive definiteness
G-ISTA (31333?) 100/100
Number of agents m 5 10 20 5 10 20
NetGGM (p = 0.9) (gzggg% (g:ggg; (g'gggf) 100/100 100/100  100/100
N =25 NetGGM (p = 0.5) (g:ggg‘;’) (g'ggg‘;’) (8‘3333 100/100 100/100  100/100
NetGGM (line) (gzgggi’) (g.gggi) (82333?) 100/100 100/100  100/100
et g R B e v v
D&C I (gﬁgggg) (gﬁgggg) (3,j882§’) 0/100 0/100 0/100
G-ISTA (0%10301032) 100,/100
Number of agents m 5 10 20 5 10 20
NetGGM (p = 0.9) (0%10301032) (0%10301032) (09510301032) 100/100 100/100  100/100
N =100 NetGGM (p = 0.5) (00.610301032) (0%10301032) (0%10301032) 100/100 100/100  100/100
NetGGM (line) (0%10301032) (0%10301032) (09610301032) 100/100 100/100  100/100
D&C 1 ©127)  (@96a) (1641900 9/100  9/100  9/100
p&C I (©o00) (00000 (©.0001) 0/100  0/100  0/100
Random model Methods NMSE Positive definiteness
G-ISTA (g:(l)ggi’) 100/100
Number of agents m 5 10 20 5 10 20
NetGGM (p = 0.9) (gf)gg‘;’) (gf)gg‘;’) (8:(1]?)3‘;’) 100/100 100/100 100,/100
N =25 NetGGM (p = 0.5) (g:égg% (g:égg; (gzéggf) 100/100 100/100  100/100
NetGGM (line) (g:(l)gg‘;’) (g:(l)gg‘;’) (82333?) 100/100 100/100  100/100
D&C 1 055 1516 S063. 7182 28098 0031 5/100 5/100 8/100
puc e RSB ow ow o
G-ISTA (0960060602) 100/100
Number of agents m 5 10 20 5 10 20
NetGGM (p = 0.9) (0%0060602) (0%0060601) (00.'000606074) 100/100 100/100 100,100
N =100 NetGGM (p = 0.5) (0?60060602) (09'000606074) (0950060602) 100/100 100/100  100/100
NetGGM (line) (00.600606074) (0%0060602) (0%00606074) 100/100 100/100  100/100
D&C 1 (8:38(1)3) (313233) (365?3954345) 5/100 5/100 5/100
D&C I (8:3832) (gﬁgégi) (82333%) 0/100 0/100 0/100

pair of agents is connected randomly with probability
p=1p =09, and p = 0.5) and a line-structured
model (agent i is only connected to agent ¢ — 1 and
agent i + 1,7 =2,...,m—1).

We first demonstrate the convergence of NetGGM.
Figure 1 shows the decrease in the average distance

between @Ek) obtained by NetGGM and © obtained
by G-ISTA in the centralized setting > .-, H@Ek) -
@H;, along with the reduction in their optimality gap

U((:)(k)) - U(@) and consensus error » .-, H@l(-k) -

(:)(k) 2 under two models over the line model network.

This confirms that NetGGM achieves consensus while
converging to the global optimum linearly, with ac-
curacy almost identical to G-ISTA. Note that when

p =1, the graph becomes a fully connected graph, and
NetGGM essentially becomes G-ISTA. As the connec-
tivity of the the network increases, the convergence
rate of NetGGM improves accordingly.

Then, we compared the estimation performance of
NetGGM with the baselines. The estimation perfor-

mance evaluated at @) is measured by the normal-
ized mean square error (NMSE) defined as

2

5k H@(k) -©
Nmse (0) = 1.
e

We simulated the cases with sample sizes N =
{25,100} and number of agents m = {5,10,20}
on two models, and the results averaging over 100
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Monte Carlo trials are presented in Table 1. It can
be observed that across all networks and scenarios,
NetGGM achieves the same estimation performance as
G-ISTA and outperforms the two divide-and-conquer
methods. This advantage is especially evident when
the sample size is small and the number of agents
is large. Among these methods, the most naive ap-
proach, divide-and-conquer I, performs significantly
worse than others and has a very low probability
of producing positive definite estimates. Divide-and-
conquer II, which employs an element-wise weighting
strategy to handle the unbalanced sample, achieves
better estimation accuracy and stability compared to
divide-and-conquer I, but it is even less likely to yield
a positive definite inverse covariance matrix. In con-
trast to these two methods, NetGGM ensures positive
definiteness of the estimated inverse covariance matrix.

7.2 Real Data

To evaluate the performance of our proposed methods,
we conduct experiments using the Leukemia dataset
from Golub et al. (1999). This dataset consists of
N = 72 gene expression profiles, with 47 samples from
acute lymphoblastic leukemia (ALL) patients and 25
samples from acute myeloid leukemia (AML) patients.
Each sample is represented by 7129 gene expression
levels. Following Rothman et al. (2009); Cui et al.
(2016), we first calculate the F' statistic

K _ _
71 e Noy (Z50) — 75)
K N
nx 21 Nay (Ngy —1) 63

)

F(z;) =

for each gene j, where K = 2 is the number of classes,
Ny is the sample size of class [, T; and Z;(y are the
overall mean and mean of class [, and &21 is the sample
variance of class [. Then we select the top d = 50 genes
with the highest F statistic for experiments. We ran-
domly partition the dataset into 100 different subsets,
each containing 35 training samples (23 ALL and 12
AML) and 37 test samples (24 ALL and 13 AML). In
practice, these data may be held by separate hospitals
and cannot be shared directly due to privacy regula-
tions. To mimic this scenario, we distribute the train-
ing samples randomly among m = {3,5} agents and
estimate the precision matrices. We then incorporate
the estimated precision matrices into a quadratic dis-
criminant analysis (QDA) (Hastie et al., 2009) model
and evaluate the classification performance based on
the misclassification rate.

As the estimates obtained by the two divide-and-
conquer methods do not always guarantee positive def-
initeness, we only present results for cases where the
estimates are positive definite. As shown in Figure 2,
NetGGM consistently achieves classification accuracy

| | 4
0.7 - : : 1 |
T T :
173 ! . o
(0] | 1 1 | !
© 06 ;o 1 | ! 1
s I ! I
I I
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Figure 2: Misclassification rate of QDA with G-ISTA,
NetGGM, D&C I, and D&C II on Leukemia dataset.
Here we report the results of NetGGM on the line-
structured model network.

comparable to that of G-ISTA across all cases and out-
performs both divide-and-conquer methods. This re-
sult demonstrates the superior estimation performance
of NetGGM. For divide-and-conquer methods, as the
number of agents increases, each agent has fewer sam-
ples, leading to lower estimation accuracy and higher
variability. Among them, D&C IT utilizes element-wise
weighted averaging, resulting in better performance
compared to D&C 1.

8 CONCLUSIONS AND FUTURE
WORK

This paper has investigated covariance selection in the
context of data distributed across a network of agents.
The problem has been formulated as a Gaussian max-
imum likelihood estimation with structural penalties,
and a novel lightweight algorithmic framework, called
NetGGM, has been introduced. Unlike existing meth-
ods that have relied on a central node, NetGGM has
operated in a fully decentralized manner with low com-
putational complexity. We have provided theoretical
proof showing that NetGGM has converged linearly to
the global optimum from any positive definite initial-
ization, achieving consensus among agents and pre-
serving positive definiteness throughout. Numerical
simulations have validated the convergence properties
of NetGGM and have demonstrated that it has con-
sistently outperformed state-of-the-art methods in es-
timating precision matrices. Future research could fo-
cus on reducing the number of iterations required for
convergence and minimizing communication overhead
during each exchange.
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A NOTATIONS

The notation in this paper is mostly standard. N stands for the set of all natural numbers. R™ stands for n-
dimensional real-valued vector space. S™ stands for the set of all n x n real symmetric matrices and S7 , stands
for the set of all n X n real symmetric positive definite matrices. For any matrices A and B, A < B stands for
B — A is positive semidefinite. 0 stands for all zero matrix and 1 stands for vector with all elements equal to
one. I stands for the identity matrix. det(-) stands for matrix determinant. ||-|| stands for Frobenius norm
and ||-||; stands for the £;-norm. (-) stands for inner product and ® stands for Kronecker product. V stands for
the Jacobian matrix and V? stands for the Hessian matrix. A;; stands for the (i, j)th entry of A € R™*". For
any convex function f, f stands for the set of all subgradients. For simplicity, we define the following compact
notations:

ok — [egk);ggk); L @gﬂ 7 EY —e® 150",

Y = [y EF —Y® _10Y®,

D — o) _ e, D® = [D{"; D{";.. ;DY
6" =™ + aD®), AP =vF (0) —my®,

AW = [aP;aP; . aP].

) m

B PROOF OF THEOREM 3

We start by proving that HYZW HF is bounded for all k£ € N. First, we introduce the following lemma.

Lemma 2. Assume that f is L-smooth, we have

n n n—1 n
f (z x) Y0 - LT Y - X1
=1 =1 =1 j=i+1

where > i a; =1 and a; > 0 for all i.

The proof for Lemma 2 follows a similar approach to that of Lemma II.1 (a result of weakly convex functions)

in (Chen et al., 2021) and is therefore omitted. Based on Lemma 2, we can prove that Hng) H are bounded.
F

Lemma 3. For every (G(k),ng)) €A, ke N, we have

) 2
where uvy, = w5 (HSzHF + E\/g) :

Proof. When we set Y(© = V£ the update rule for Y can be expressed as

D) _ LN~y (oD
v+ — val (@i ) ) (7)

i=1
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Applying Lemma 2, equation (7), and the 2-Lipschitz smoothness of ||H§,7 we obtain

LS~ [y ®]? LS N [y |
P R +WZ > v v,

1 Xy (h)
w2 Yo

1=1 j=i+1
1 & 2
nC e -
AT ) ZZ e

IN

Ly E®
I MACH )H =2
Since U is coercive and (G(k), ng)) € A, we have
(e® NPT e gy Ve
o (0)], = s 195 001 = 0 g 00 = % (180 3 ).

2
Moreover, - < HRyI||2F = dR% due to (Q(k),ng)) € A. Therefore, we obtain

2
= an Vd 2
;ﬁ (”Si|F+R®> + dRy,.

O

Based on Lemma 3, we show that if (G‘)(k),ng)) € A and 7 is chosen sufficiently large, e+l generated by
NetGGM must be positive definite.

Lemma 4. If (G(k) E ) € A, and

2 (my/STL, uvs, + ARY + Md)
T> , (8)
R

then {@UH%), @(kﬂ)} € B, where
B:{(BRQ@Ij@ij (R@—l—R?@)I,i:LZ...,m}.

Proof. Since Fi(k) is 7-strongly convex and A ||@®]||; is convex, for any ¢ € A0 H@Z(-k) H and any ® > 0, we have
1

Y @)+ a2,
(@““)) A +(vE® (6) +¢.@ - @g’“)> +2]e- @5“”2
O

o) Ao, - [ei (o) e 5|2 (75 (01) ) 0

k k 1 = (k k
I S T 0

1
When choosing ® = @l-(k+2)7 (9) becomes

iT Hvﬁgm (@§k>) + cHi > p® (@yc)) Y H@qu)Hl A (Q(H;)) . H@(H;)

1
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On the other hand, according to the first-order optimality condition, there exists & € A0 H@jﬁé) such that
1
- <vﬁi(’“) (@f“é)) +§,D§’“)> > 0. (11)
In addition, because Fi(k) is 7-strongly convex and A||-||; is convex, we have
A (@Z(k)> L HQ@)H >0 <@Sk+%)> Y HGSH%)
1
R (e FE T PO
Plugging (11) into (12), we can get
79 (0) +a|e)| (@§k+%>) ) Hegk+%> =2 o (13)

Combining (10) and (13) and transforming the inequality leads to

[[vE® (e) + CHF

T

<2fos (61 +
L

[P, <
F

—_

Since each entry of 8x\”®§k)H1 falls within [~A,\] and there are d? entries in total, it follows that

max @WH [Inll = < Ad. Consequently, we have
vl

nGABH
[p®], < 2], + 2ra (19
F T F T

Based on Lemma 3 and (8), we further derive

JERE
:

for any k € N. Combining (14) and (15), we conclude

o], <%
tllE 2

Therefore, we have —ﬁl < D(k) < ReI Recall that ('-) € {(-') | ReI=< O jE@I}, so we have G‘)Ek) S

1
B and @i(kJrQ) € B. In addition, due to Step 2 of NetGGM, w;; € [0,1],4,5 = 1,2,...,m, 22"21 w;; = 1, and
a <1, we have G)EkH) € B. O

Lemma 4 reveals that if %) € A and 7 satisfying (8) for all ¢ = 1,2,...,m, then both ('-)Z(-k) and @Ekﬂ) € B.
Since B is a compact set, we have f; is L;-smooth and F' is u-strongly convex on set B, i.e., for any @, ® € B we
have

IVfi(©) =Vfi(®)|lp < Li[|[© = @[,
and

IVF(©) = VE(®)|p > p]|© — @[ 5.

Then we construct a coercive function V' and prove, given two iterates in B, the decrease in the value of function
V is bounded. We first bound p at the (k + 1)-th iteration by the result of the k-th iteration. We have the
following upper bound of the optimality gap with respect to consensus errors.
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Lemma 5. Based on Lemma 4, there holds

ZU( k+1> zm: (Q(k)> ep <4L12nax

2 2 20
= o2 B ]) o (- 25 - 3o) 1oV
pa) F+ Y| p alT R@

(16)

2
where €, > 0 and o < %@T.

Proof. Consider the Taylor expansion of F

F (é)ﬁ’“)) =F(0!)+(vr(e),apl) + %Vec (aDg’“))T V2F ((Z)E’“)) vee (aD{)

_ 1 T .
=F (@gk)> + <A§k),aD§k)> + <mY§k), ang)> + 5 vec (aDEk)) V2F (@Ek)) vec (ang)) . (17)
Because E is strongly convex with 7 and X ||-||; is convex, according to the first-order optimality condition, we

have )
1
R g

1
Using the convexity of G, we have

AH@E’”Hl a0 ) L (1 a)e® +(1fa)AH@§’“)H1. (19)

1
< a/\H(af’““)

1 1

Substituting (18) and (19) into (17), we have

r(6) < r (o) + (al.an(”) o] -6l ~ar o],

+ %vec (aDl(-k))T V2F ((:)Ek)) vec (aDEk)) . (20)
According to Lemma 4, we have (:)Ek) > %@ I, and hence
v (6)") = ((532(“)71 ® (C:)Ek))i1 < }%I- (21)

Substituting (21) into (20), we have

P(ef”) < (0) +(al.ant) 0] ~afol —ar o[ + e o]

< (o) 4ot ol ~ (=~ 25 ) [ ool A,

which equals to

0 (60) 21 (60) = (= 20 o2 oo, a1, &

Invoking the convexity of U and the doubly stochasticity of W, we can bound >..* | U (@gk)) as

v (o) s v (00) + 3 (o, o], ~a (- 52 ) [P]7)

=1

s
Il
—
<
Il
—
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Using Young’s inequality, we have

oo ol < 3
F F

2P

D[, + 5o ] &8

?

where €, > 0. Therefore, we have

3

1

- (h41) ®) , |2 2201 |2
Sulor)<Soler) £ (5ol (2 ) o)

=1

e %) QAHWW_ 20 1 HMF
zZ;U(G)Z )+26p A ST 2 5P D o (25)
and we choose €, such that
2 1 <0
— — — —€ .
R 27

2 2 2
Then, we bound HA(’“)H in terms of the consensus errors HEg)H and Hng)H . Recall the definition of the
F F F

tracking error

2
A(k)HF and (7), we have

2 m _ _ 2
|a® | =3 |[vF (0) = m¥® +my® —my®)|
R ' P lF

2

55w (09) - S (60) st
i=1 ||j=1 j=1 P
(k) Nk 2 |[g®|?
<omd-3 v (6) - v (0] + 2 [
=1 j=
Recall the Lipschitz smoothness of f;, i =1,2,...,m, we have
|| 2 lo®)  e® | 2 |||
[a®]l, <2m 35013 e - |+ 2m? 0],
i=1j=1
272 OllE 2 ||lmk)||?
-t [ o B o
Substituting (26) into (25), we obtain the desired result (16). O

Subsequently, we bound the consensus errors with the following lemma from (Sun et al., 2022).

Lemma 6. (Sun et al., 2022) The disagreements HEgC)HF and HEgC)HF are bounded by

5, <o]BE], +anlp®]
E < E D 27
[BE|, <o |ES|, +ar|D®],. (27)
and

H Y o PRy F+ Pl|*e F+a p F’ (28)

where p = HW@I— % (11T ®I)||2.

Based on Lemmas 5 and 6, we can prove Theorem 3 and give the specific expression of the parameters.

Theorem 7. Assume that Assumptions 1 and 2 are satisfied. Based on Lemma 1, When 7 > 7, and a € (0,a4),
where

2 (/S wv s, + dRE + Ad)
Ty = R@ ’
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T,

1 19 am2L2, p?(14€;") + gm2L2,.00 (14, )" 1
2 \\E = (T+<a) (1=p2(1+ea))? he
& = min{ =2 1

- - b — — b b
2 o (42 Laasp?(Ites’) | 8m2LE 0t (14eg t)”
1—p2(1+eq) (1—p2(1+€aq))?

€a >0, and 1 — p? (1 +¢4) > 0, then for {G(k),Y(k)}k N obtained by NetGGM, we have

S
m 2
v (@®+D) Y(k+1)> <V (@(k) v®) _ HD(_k)H

( B >~ 9 ) 6; (3 F’

where
1
m o (T — 12%%) m2 2
v(e® EP) =3"v(e®)+ - 1=
v ; ' 1—p2(1+e) 177 llF
-1
L (r-2) mLhu (@0 1+ +1-p*(1+e) HE(k)H2
(1—p2(1—|—6d))2 ©

and

-1 B S\ ! .2
g (o) et set(ro ) w144
= _——— = j—

1—p*(1+€q)

(1—p2(1+eq)” =0

Proof. Squaring both sides of inequality (27) and utilizing Young’s inequality provides

k1) |2 k) || 2 k
[BE* ], = 2 [BE, +e2 [P+ 200 B DV,

2 2
< p*(1+e) HEg) HF +a2p? (1+¢;Y) HD(k)HF :
Similarly, we have

2 2 2
(k+1) 2 [ (k) k
£, < 7 [B2] . + (2L [BE] , + oLunmsr [ )
+ 29 [BY] (2L [BE[, + aLunass [PV )
F F F
2 2
<ot (Ut ea) B9+ s (14 21) (2 [BE]], + o D] )
2 2
ng)HF 212, p? (1+e;h) (4HEE§)HF +a? HDWH >

2
F
2 2 2
B || 8020 (146 [BS) | +2L200® (14" DO (32)

<p*(1+€q)

=p* (1+eq)

2 (407 (1€ ") +1—p (14€a) 2 2 (407 (1€ ") +1—p (14€a) ONE :
((1—£2(1i6d)))2 2) and add ( 1,(p2(1i61) 2) HE@ HFOH both sides of
(31) leads to

-1
ae, L

Multiplying 2

-1
ae, L

206, ' m2L2 . (407 (14 €,") +1— p2 (1 + €q))

(k1)
2 E@
(I=p*(1+€a)) F
20, 'm2L2 . (407 (14 €,") +1 - p* (1 + €q))

2
E(k)H
1-p2(1+eq) H ©llr

+

<2o¢e;1m2Lr2nax (4p? (1+€) +1—-p* (1 +ea))

2
e =&
1—p2(1+e) F
203, ' m2 L2, (402 (1 + ;") + 1= p* (1 +€a)) p* (14 €,1) HD(k)HQ ’ (33)
(=2 (1 +ea)) F

+
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—-1,.2 2
while multiplying % and add ae, 'm? HE%@ HFon both sides of (32) leads to

ae;tm? 2 2
P E(kJFl)H -1, .2 HE(k)H 34
1—p2(1—|—6d)H Y F+a€pm Y g ( )
- Ozezjlm2 HE(k)HQ N 8ae;1m2L?naXp2 (1 + 6;1> HE(k)HZ N 2a6;1m2LfnaXp2 (1 + 6;1) a? HD(k)HQ
T1-p2(14e) 7Y llF 1—p2(1+€) ©llr 1—p2(1+e€q) F
Summing (16), (33), and (34), and choosing €, = 7 — }2%‘3 leads to the desired result (30). O
g

C PROOF OF THEOREM 4

Theorem 8. In the same setting as Theorem 7, if the proximal parameter is sufficiently large satisfying T >

max {11, Rf%} and the step size satisfies a € (0, @1], we have
Lig

~ 12 — N2 2
H@<k+1>—1®®H <(1-£"%, H(a(k>—1®@H SR L Y5
F F €O

T — € (1 —€o) max

2 2
E(k)H 2 HE(k)H . (35
ot Yo, (35)
where eg € (0, ).
Proof. Recall that f; is L;-smooth and F' is p-strongly convex on set B, we have

(6l ) s (617) - (vr (617) p7) < ot

2 (2 K2

and
5) — F(e®) — M).6-eM) =6 <.k>HQ
F(@) F(@Z ) <VF(®Z ),@ e/ >72 o-o| .
where L = Y| L;. Summing these two inequalities, we have
. 1 L 2 ) 2 . 1
0<F(6)-F (@f’“?)) vz HDE’“)H Mg - @5’”” - <VF (e).e- @§k+2)> . (36)
2 F 2 F

Since F; is strongly convex with 7 and |||, is convex, according to the first order optimality condition of
o)

B , we have

L 12
®(k+§) _6

Ao - H@ﬁ*%) > <mY§’“) +7(6-0M) Lolrs) _ (1)> ire (37)
1 1 F
Summing (36) and (37), we have
ol <)o () 2o -

~ ~ 1 1 ~
+T<@ -V e- @f’“+2)> + <A§’“),@f’“+2) - @>.

. 1
Using the fact that U (@) -U <@§k+2)> < 0, we have

1 ~ 2
oo

?

2
L|prl; - £
F 2T lr 27

ool

+ <é) ~eM e- (9,(’”5)> +1 <A§.’“>, olF3) _ (:)> .

2
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When 7 > L, we have

1 . 1 2 . 2 . . 1 1 1 .
H@S’” l_6 53 pM| - Lle-e®| + <® ~e 6 - @f‘”z)> +=||a®| H@f’”z) e
2 F 2T F T F F
1 A 2 1] A 1]|? 1 1 .
~(5-2)|e-e®| +5]e- o3|l 41 |a®| oY) g .
2 27 F 2 T F P
Rearranging the inequality above and using Young’s inequality, we have
AN . 2 L
ot -6 <(1-2)o-et + - |an +2[el -] .
P T F  Té€o T P
which can be written as
AN — 2 1 2
el o) <(1-222)|6-0f | + - [a%[. (38)
P T — € F  eo(T—€0) F
where p > e€g. Summing (38) for all agents leads to
2 m m 2
*+D) _ 100 = ,,~<’“>_A 6" -6
le 1®@HF_Z ZwUQj 6 <Z
=1 ||j=1
’ (1-a) ZH@““ @H
<(1-E=2a) o 1e 6, + illa®]
T — € (7' —€o)
Recalling (26), we obtain the desired result (35).
Note that since V2F (@) = O lge! j I for ® € B, we can choose L = R2 , R2 =L 0O
=e
D PROOF OF THEOREM 5
We first bound HD H » Which is detailed in the following proposition.
Proposition 1. The following upper bound holds for HD(]“) HF:
2 2 2 2 2
HD(’“)H < (M+12> Hl@@ @(k)H 3”; HE(Y'“)H : (39)
F T2 F
Proof. According to the first order optimality condition of © along with the convexity of A ||-||,, we have
. 1 . 1 .
og<VF(®),®§’“+2)—@>+AH®§’“+2> —A )@’1. (40)
1
Summing (37) and (40) yields
k+1 NE A A k+1 A
e | < <VF (0) -my® -7 (6-0") o) @>
F
. , . 1 .
<|vF(©)-my® -r(6-0") HF o" %) _g| .
F
o (k+3) A .
Dividing ||©, — ©| on both sides, we have
F
e _e| < [VF(©) =m¥®| 4m|¥® -y +r|6-0f|
F F F
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Since

L Pl LR
F F

we obtain )
], < or(8) o]+ 2 1, e2fo ot
F T F T F F

Taking the square of both sides and recalling (7) and the Lipschitz Smoothness of f;, we have

2 . _ 2 2 2 . 2
1 < 3o (6) e 22 [ e oo
1 F 7_2 I3 T2 k3 F 3 P
3m - : @\ L 37 |5 _ 0] 5 _o®|
<7 2 [[v4(8) - v (o) + T [¥ 0 - v + 120 -0l
i=1
3m & 2 3m2 - o2 . NI
225 a2 v oot
- 72 ; J F+ T2 ¢ F+ tollr
Summing over i = 1,..., m, we have the desired result (39). O

We are now ready to prove the linear rate of NetGGM. We build on the following intermediate result, introduced
n (Nedic et al., 2017).

Lemma 7. (Nedic et al., 2017) Given the sequence {s(’“)}, define the transformations

SU) () = max ’ ‘  and S (z) = sup |5 ’ P (41)
k=0,....K keEN
for z € (0,1). If S (z) < A < +oo, then |sM)| < Az*.
We show next how to chain the inequalities (35 (32), an so that Lemma 7 can be applied to

12
the sequences {H@(’c) ~1 ®@HF}, {HES“)H } {HE(k)HF} and HD (k) HF}, establishing thus their linear

convergence.

Proposition 2. Let O (2), Eg() (2), E}(,K) (), and DY) (2) denote the transformation (41) applied to the se-
quences {H@m e @Hi} {Hngui} {HE@Hi} and {|DW|}, respectively. Given the free parameter
€q > 0, the following holds:

05 (2) < ap (o, )<4L§13XE<K) (2) + 2B (z)) +bo (o, 2), (42)
ESY (2) < ap (2) a?DT) (2) + b (2)

()
()

B (2) < ap (2) L (3B (2) +202D5) (2)) + by (2),
()

< apoO (2) + aDYE)(/K) (2),

for all z € (max {1 —b=0q p? (1+ ed)} , 1), where

€o
) 2
am 2H9<0>—1®®H
ao (a, z) = co(r=¢e) . bo(a,z) = £,
2 - (1-=2a) 2 (1-=2a)
2 —1
2o =2 o B,
= P T ) bo(2) = ———|IE by (2) = ———_|IE
aE(Z) - — 2(1+6d)7 @(Z) Z—p2(1+€d) e F’ Y(Z) Z—p2(1+€d) Y F7
3m?2L2, 3m?

max
apo = ——5 — +12, apy = —5—-
T T
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Proof. Multiplying z=* on both sides of (35) and taking the maximum over k = 0,..., K, we have

_ N2 2
< max {(1 — ﬂe@a) H@Ug) -1 (EQ@HFZ*’C + _am <4L12naX

2 2
s ol
T — €0 €o (T — €o) © FZ + v FZ

2
n— €o (K) am 2 (K) (K)
<{l—-—=a) O 4+ —F (4L: . F, + 2F. .
=~ ( T —¢o Ck) (Z) o (7_ o 6@) ( max—© (Z) Y (2))

Moreover, according to the fact that

~ 112 ~ 112 ~ 12
(o reof: o}, (o o6 0 20 o a0

ax ax
k=0,...,.K k=1,...K
we have the desired result (42).
Then, applying a similar procedure as the one used to obtain (42) to (31), (32), and (39), we have the rest of
the results. O

Chaining the inequalities in 2, we can finally prove Theorem 5.

Theorem 9. In the same setting as Theorem 8, if the prozimal parameter satisfies T > max {11, Bf%} and the
Rty

2
step size « satisfies a € (0, ), where &y = min {641, (1;)) } , for a € (0, as), we have
2

i NI
$ ot - <
; F
i=1
Jor all k € N, where Ay, A>0, and z € (0,1) are defined in (52), (48), and (55).

Proof. Chaining the inequalities in Proposition 2, we have
DY) (2) <ap (@, 2) DY) (2) + bp (o, 2)

where

ap (o, z) = dapoao (a, z) L?naxaE (2) a?

+8(2apoao (o, 2) + apy)ag (2) L2, ap (2) o?

+2(2apoao (o, 2) + apy) ag (2) L2,,.o?, (43)
bp (o, z) = apobo (a, z)

+4apoao (e, 2) Liaxbe (2)

+ 8 (2apoao (o, 2) + apy) ap (2) L2, be (2)

+ (2apoao (o, z) + apy) by (%) . (44)

Therefore, for a (a,z) < 1, we have

bp (a, 2)

DU ()< 2220 < 45

(0= 28D <o, (45)
Plugging (45) into (42), we have

bp (a, 2)

0% (2) < a(a,2) T—ap (@,2)

+b(a,2) < +o0o,

where
a(a,z) = (ao (a, 2) 4L12nax +ao (a,2) 2ag (2) Lfnax8) ag (2) a® +ao (o, 2) 2ag (2) Lfnax2a2, (46)
b(a,z) = (ao (a, 2) 4L12nax + ao (o, 2) 2ag (2) LfnaXS) bo (2) + ao (a, 2) 2by (2) + bo (a, 2) . (47)
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According to Lemma 7, we have
112
o 1]l <a

where

bp (a, 2)

A=alw2) 7= =0

+b(a, 2), (48)

112
This means that {H@UC) -1® @H } vanishes R-linearly at a rate of at least z.

Finally, we prove that there exist o € (0,1] and z € (max {1 - B2q, p? (1+ ed)} ,1) such that ap (o, z) < 1.

We first set z = 1 and find & € (0,1) such that ap (o, 1) < 1 for all « € (0,a). For parameter €4, ap (a, 1) is
minimized when

14+¢et 1-p
€4 = arg min = .
d ge>01—p2(1+e) p
For eg, ap (o, 1) is minimized by solving the following problem:
2

minimize  ap (o, 1) i
z olal)=——=
€o €o (1 — €o) (49)

subject to eg € (0, )
The solution of (49) is obtained when eg = 5, and hence

4m?
ay (a,1) = —-.
(0 Mg
Then since ap (o, 1) is continuous on [0,400), ap (a,1) > 0 for all @ € (0,1], and ap (0,1) = 0 when « = 0,
there exists some @& € (0, 1] such that ap («, 1) < 1 for all &« € (0,&). Then since ap (&, z) is continuous at z = 1,
there exists z (@) € (0,1) such that a (o, z (&)) < 1.

Then, we find the lower bound for z and the wupper bound for a. Recall that 2z €
(max {1 — k=0 q p? (1+ ed)} , 1) For z > 1 — £= 6904 we impose the stronger version

T—€

— 0 —
poco,  fo(u—co)
T — €O T — €O

z2>1—

(50)

where 6 € (0,1). Hence, ao (e, z) can be bounded by

2
S w
—— < inf = 0.
z—l+%a coc(0,n) Beg (1t — €o) U2

ao (a, z) =

Substituting the upper bound into ap (a, z), we have

4 2
ap (a,z) < 4aDo£29 12 ap(z)a?
I
4m 2
+38 2apo—9 +apy Liaxar (2)
4 o?
+2 2CLD079 + apy max .

The right-hand side is minimized at ¢4 = \/Ep*p . Then, the sufficient condition of ap (o, z) < 1 is

1 1 E
a< A 1 A 2 A,2 4 ’
< (( 0,1+ Ao 3) Vzi—p) + Ag (ﬁ—p))
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where
Ag1 = 4;n29_1aDO4P2L12naxa
Ago = <8’2229_1GDO + CLDY) 8 L2 ases
Ags = (8;229_1@130 + aDY) 202 L2 o
This implies that

22 (p+ \/0719)2, (51)

where
Ag=/Ao1+ Ag+ Ag . (52)
Defining eg = 4, 6 = 3, and
1
J=
2(21 —p)

inequalities (50) and (51) lead to

z

max{(p+ \/@)2,1@[}. (53)
Recall that ¢4 = @, it follows from (51) that
z> (p+\/a719)2>p2:>2>pﬁ:p2(1+6d)-
For the upper bound of o, z < 1 implies that
o <—. (54)

Combining (29) and (54), we have

2
Note that the function (p +,/aA 1 ) increases monotonically as « increases, while 1 — Ja decreases monoton-

ically as « increases. Then since p < 1, inequality (53) is equivalent to

1—Ja, a € (0,a%),

L 2 55
B (P'F\/O‘Aé) , € a*,ag), )
2

—p\/A>%+ AL +J(1-p?)

A%Jrj

where

(07
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E PROOF OF THEOREM 6

To prove Theorem 6, we first revisit the definition of the e-subgradient and its properties.

Definition 1. For convex function f, £ is an e-subgradient of f at x if

fy) > f(x)+Ey—x) —¢ Wy (56)

Then, the following properties hold for subdifferential:

1. e-subdifferential of a convex function is nonempty, convex and compact;
2. x is e-optimal of G if and only if 0 € 9.G(x);
3. If G = G1 + G5 and G; and G; are convex, then 9.G(x) C 0-G1(x) + 9:G2(x).

Lemma 8. If f(x) := R"™ — R is u-strongly convez, we have Vf(x) + § € 0:f(x) for all ||5||§, < 2ue, where
e > 0 and 0. is the set of e-subgradient.

Proof. Because ||5||2F < 2pue, we have

0 (y—x)—c= H(ST(Y_X)HF —€

<[Ioll Iy =x)llp —¢
<V2ue[[(y =x)llp —¢

1% 2
<5 My =%z

Then, due to strong convexity, it follows that

F) 26 + V)T (v =)+ 5 ly =l
>f(x) + V) (y=x)+6 (y —x) —¢
=f(x) + (Vf(x) +8) " (y —x) —«,
which completes the proof. O

E.1 Local strong convexity and Lipschitz smoothness

Assuming the inexact solutions of local optimizations are ¢(*)-optimal and (%) decay at least at an exponential
rate, we assume that there exist constants ¢ > 0 and € (0, 1) such that e*) < g*. We redefine set A as

A= {(@,Y) [V(©,Y) <V (00, YO)+ 1271”5}

Compared to the case where subproblems have closed-form solutions, inexact solutions result in a smaller step
size required to ensure convergence, as stated in Lemma 9.

Lemma 9. On the basis of Lemma 3, if (G(k),E§E)> eAi=1,2,...,m and

my/Yo uvy, +dRY + max, coc (o) 7l

T > max

1o, (57)

V2-1)°R},

where %) < ( 5 , then (9(’”%),@(’”1) € B, where

B:{@R;Ij(—)ij(R@—i-R;)I,i:LZ...,m}. (58)
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1 1 . 1
Proof. Since 0 € 9 (k)F k) (®§k+2)> +G (®§k+2)>, there exists some & € 86(;9)Fi(k) (@S’“‘z)) and —¢ €
1 -
0.G G)Z(IH_Q) . Because Fi(k) is T-strongly convex, according to Lemma 8, we can find some ||('5||§ < 27¢)

. 1
so that £ = VF,L.(k) <®§k+2)> + 8. Recall the definition of (®)-subgradient, we have

1 ~ 1
¢(eM)=c (@f’”?)) + <VFi(k) (@5“2)) + 5,D§k)> —e®), (59)
In addition, because Fi(k) is T-strongly convex, we have
~ ~ 1 ~ 1 2
RO (o) 2 (o070) - (ort (o) ) L

Plugging (59) into (60), we can get

R () 6 (e) - £ (0]~ () =7 b+ (5,D1) - 0 (1)
25 [Pt - Vare® oo, -

Combining (10) and (61) and replacing A [|-||; with G leads to

2
L o atk) (o) H2 T H <k>H 2 k
— |VE ; >~ [ ||ID! /2t | —2:()
2THVZ (91)+CF_2 i g ¢ =0

T

and hence

1 ~ 2
D], < /% [77© (0) + <[+ 2o 4 2ete
F T T

2

1 4 5
< = |m HYE’C) H + max H"?HF + ek 4 [ Zam),
’ F neoc(e) T T

[ V)

When 7 > 1, we have

2

PP < 5 (m[Y®] + max il |+ 4e8) 4 Vo,
F T F neog(@ﬁ"’))
Then due to Proposition 3 and (57), we have
R
D(.k)H < e 62
H e T2 (62)
for any k € N, and hence @EkH) € B. O

We have the following upper bound of the optimality gap with respect to consensus errors.

Lemma 10. Based on Lemma 9, there holds

m 2 2 2 1 2
S0 o) <o o) « gt (i 2|0 ) o (5 22 ) o

+ 2m045(k), (63)

2
where €, > 0 and o < ET@T.
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Proof. Because Fvi is strongly convex with 7 and G is convex, according to the coptimality condition, we have
41 2
¢(eM)-a (@5“2)) > (mYP 48, D" + 7 D]~ 0, (64)
F
Substituting (64) and (19) into (17), we have
- - 2 9202 2
F (@E’“)) <F(0)+(al -s,ad") +c(0) - (@E‘“)) —ar [DP| + = [P+ ac®
) ) ) F o Rg F
k k = (k) 2a k) ||
<r (o) vo(ot) - (a) o (- ) o]
+a HD(k)H HA(k)H +aV2relk HD H + ag®), (65)

We can now substitute (65) into (23) and get
Su(er) <y u(el)
i=1 i=1
m
5 (o ot - e 2) [ o] ).
i=1

Using Young’s inequality, we have

aV 2rek) HD(k)H < ae® + or "D(k)"2
Colle T 2 R
Recall (24) and (26), we obtain the desired result (63). O

T

Following similar proof as in Theorem (7) and choosing €, = 7 — 122—3, we have the following theorem.
Fass)

Theorem 10. When 7 > 7, and « € (0,a)), where

my/320 vy, + dRS + max, coc (o) [mll
T, = max 1y,

\/ (Lo - va®)" - et

1 am2L2, p?(1+e;") | 8m2L2,, 0% (14 ")’ 1
T (\/Ré‘) +2 ( 1—p2(1+eq) + (1—-p?(1+eq))® Ry
1

2 .
e <« 7(\/57;) Eé), and

A — mi R2 66
aq min § figT, ) amPL2 2 (1+e;1) Sm2L2  ph (1+e;1)2 ; s ( )

1-p%(1+eq) (1—p2(1+€q))?

then for {G)(k)7Y(k)}k . obtained by NetGGM, we have
€

v (@(k-&-l)?y(lﬁl)) <v (@(k),y(k)) > HDEMHQ + 2mae®. (67)

F

i=1

where

-1
(o mp) -55u (o) + LB

2c (% — é—‘;‘e) m2L2 . (4/)2 (1 + e;l) +1-p2(1+ ed))
(1= p2 (1 +€q))?

2
E(k)H
H © g’



Covariance Selection over Networks

-1 -1 2
roa 402 (3-2) L (") s (3-2) mPLiue (14
1 R} 1—p?(1+€q) (1—p?(1+€a)”

Utilizing the fact that e*) < ¥, a < 1, and Theorem 10, and iterating to k = 0, we have

1% (G(k“),Y(k“)) <V (6(0 O)) + 2mozZe h<v (6(0) Y© ) + 2ch€
=1

SECEREIE 2me.
- ’ 1-¢

Therefore, <®(k), Y(k)> € A and all the @gk) are positive definite for every iteration k € N.

E.2 Linear convergence

Theorem 11. Based on Theorem 10, when T > we have

R27

A2 ) A2 2
H@(’““)—l@@H < (1-H=2, HG)(k)—1®®H -
F T — 2¢€0 F eo (T —2e0)

k) |12 INIE
e[+ 2|0

2 (eg'm+1) )

T — 2€p (68)

where eg € (O, %)

Proof. Since F is strongly convex with 7 and G is convex, according to the first order optimality condition of
k+1)
(9( 2

i , we have

¢(6)-a (@§k+%>> > <mygk> ir(6-0)ts, 00 @> i

Summing (36) and (69), we have

“cv(e) u(el) L HDmH

F

—e®(69)

ok

)6

T

When 7 > L, we have

2
Hgi(wé) 6 Sl “ng)“2 o H@ B @Z(k)”2 N <(:) —eM @ @1(k+é)>
2 F 27 F
1 1 R V2re(k) 1
L HAEIC)‘ ng'(Hz) _e| Y o @i(k+ ) (S
T F F T F T
1 2
(-~ ’@ @ac)H 6ol
2 27 P
. HAW\ o) _a| 4+ Vare® g ol 1w
T F r T F T
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Rearranging the inequality above and using Young’s inequality, we have

L2 . 2 1 .
o) _g| < (1 - ﬁ) HG) - @5’”“ HA(’“ H L2 let*d) Ll 2 (gl 4 1)e®
s T F  Teo r
which can be written as
P —9 . 2 1 ST +1
o) 6| <(1-1222) o - o]} + — L [lal]} + 2T 0
. T — 2¢€g o (T —2e0) T — 2€g
where i > 2eg. Summing (70) for all agents leads to
2
(k1) —le® _ ol
o -1e6] =305 w6l -6 <3-|of -6,
It
< i o™ el 1a i o _ 6|’
o - |e -6
j=1 B j=1
-1
- (1_ u—%ea) e _1®@H2 N HA H L 2melee T+ gy
T — 2¢€o F 6@(7’—260 F T — 2€0
Recalling (26), we obtain the desired result (68). O
We then bound HDW H which is detailed in the following proposition.
Proposition 3. The following upper bound holds for ||D ||
2 2 . 2
[l = (s s o) e @ - o+ T e + 2 m
F 72 F
Proof. Summing (69) and (40) and replacing A ||-||; with G yields
1 2 _ _ 1
T @§k+2) -0F| < <VF (©) = mY® 4 mY® —py®) <®* Q(k)> — 51.7@5’”‘2) - @*> +e®
F
_ 1 _ 1
< <VF (©%) —mY ™), @f’““) - @*> +m Hy(k) _ ngH @l_(’cﬂ) e
F F
1 1
+7|e -el| H®§k+2) e 2re(®) ‘@5’”2) — || +eW.
F F F
Recalling (7) and the Lipschitz Smoothness of f; and using Young’s inequality, we have
2
1
e e
F
m 1 2 1 2
<> (vh©) -V (e o) g v ®—y®| 4+ 2 o) g
= J 26D F 2 F
72 ®]|* . €D ||gk+3) ’ €D || g(k+3) i
+—‘®*—@i H + =20, -0 +repte® 4 2o —eF| W
€D F 2 I3 2 F
. k+3) (#)? . g®
S oo, ol - g [5 v oot
- ; ! TR 26D ’ 26D
2
3 1
=D ‘@l(’”“‘) — 0| +(rept+1)e®
2 F
2 m . Wiz 72 o112 (k+3) 2
< Zmax H@*_@( )H HY(k) ( )H L H@*_@( )H ) o) zZ) _ @* -1 1 (k).
_2€D; J 2¢p ‘ F+26D i || T een || F+(T€D+ )
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Since

2

o -6 e < ol -6

and let ep = 7, we obtain
L2 2 2 2
e o R R S R
-

Summing over ¢ = 1,...,m, we have the desired result (71). O

We are now ready to prove the linear rate of NetGGM. Following similar steps in Proposition 2, we have the
following proposition.

Proposition 4. Let 05 (), Eg{) (2), E&K) (2), DY) (2), and 5 (2) denote the transformation (41) applied
~ 112 2 2
to the sequences {H@(’C) _ 1®@HF}’ {HEg)HF}’ {Hng)HF} {HD(’“)HZF}, and {e™}, respectively. Given

the free parameter eq > 0, the following holds:

0 (2) < ao (a,2) (4L2uEG) (2) + 2B (2)) +bo (@, 2) + co (a,2) 55 (2), (72)
EGY () < ag (2) 2D<K>< ) +bo (2)

!
!
N
In
Q
S
Q
Q
+
Q
S
=
&
+
O
S
Q
5

forallze(max{l—“ 2¢o 7/)2(1—1—601)}71>7Where

_am? o™ -1 ®@H2 2(cg'r+1)
ao (a, 2) = co(7—2¢0) , bo(a,2) = Ly co (a,z) = T—2¢e
z— (1 - k=20 z— (1— b=2cey z— (1 - b=2cey
T—2€o T—2€0 T—2€o
2
e o] o1
S Sl T A bo(z)= ———_||E by ()= ——— _|E
az (2) z2—p2(1+¢)’ o (2) z—p2(1+eg) 7€ llp’ v (2) z2—p2(1+¢€)
8mLfnax 8m? 20m
apo = 2 + 10, apy = 7 cCpo = T

Chaining the inequalities in Proposition 4, we can finally prove Theorem 6.

Theorem 12. Assume that Assumptions 1 and 2 are satisfied. Assume that the error ¢*) decays at least
at an exponential rate (i.e., there exist constants ¢ > 0 and € € (0,1) such that ¢®) < %) and satisfies

2
ek < % For T > 15 and o € (0,a3), where

a3 = min< & 7(17/))2
3 1 A/l ’

8m?
AG,l = 79 aDo4p2LmaX,

16m?
Agz = ( T;L 0~ apo + aDY) 89" L
W

16m?2
Agz = ( o 9_1aDO+aDY> P L
%
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and

Ag = \/Ag1+ A2+ Ag s,
we have

m 12
5ot - < -0
i=1

for all k € N, where A', B > 0 are constants defined in (74) and (75), 2z’ is defined as
' = max{z, ¢},

and z is defined in (55).

Proof. Chaining the inequalities in 4, we have
DY) (2) <ap (e, 2) DY (2) + bp (a, 2) + ep (o, 2) EF) (2),
where ap (o, z) and bp («, z) are defined in (43) and (44), and
ep (a,z) = apoco (@, z) + cpo.

Therefore, for a (o, z) < 1, we have

(") (., bp («, 2) cp (a, 2) =(K) (,
b ()Sl—ap(a,z)Jrl—aD(a,z)u (2). (73)

Plugging (73) into (72), we have

bp (a, 2)
1—ap(a,z)
where a (o, z) and b (o, z) are defined in (46) and (47), and

o) (2) <al(a,z2) —i—b(a,z)—i—c(a,z)E(K) (2),

ep (a, 2)

cla,z) = a(a,2) T —ap (0.2)

+co (o, 2).
According to Lemma 7, we have
2
H@w) 18 @H < (A' + BEWO (z)) 2k,
F

where

bp (e, 2)
1—ap(a,z)
B=c(a,z2). (75)

A'=a(a,z) +b(a,2), (74)

112
This means that if Z(%) () has an upper bound, {H@UC) -1® @H } vanishes R-linearly at a rate of at least z.
Following the same steps in the proof of Theorem 9 and choosing eg = 4, we can prove that ap (o, z) < 1 when
a € (0,a3) and z € (z,1). In addition, since e*) < ¢2* and 2’ > &, we have Z(5) (2) < ¢, and hence

~ 112
H@W 10 @HF < (A" + Be) 2",

which proves Theorem 12. O

F ADDITIONAL EXPERIMENTS

We also compare the execution times of all methods as shown in Table 2. NetGGM requires sacrificing some
computation time to achieve the same level of accuracy as the centralized algorithm. The convergence time of
NetGGM is influenced by various factors. As shown in the table, the larger the number of nodes in the network
and the lower the network connectivity, the longer the convergence time. In the worst-case scenario, NetGGM
can estimate a 50-dimensional precision matrix using 25 samples on a linear network with 20 agents within
approximately 300 seconds. As for the longer runtime of the D&C methods, this is because we use G-ISTA to
obtain local estimates, and the limited number of local samples at each agent leads to slower convergence of
G-ISTA.
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Table 2: Average and variance (between parentheses) of CPU times of NetGGM and baselines on synthetic data.

Cliques model Methods CPU time (s)
0.6592
G-ISTA (0.0518)
Number of agents m 5 10 20
8.7564 17.2320 51.9478
NetGGM (p = 0.9) (74.0955) (305.1681) (2173.9923)
B B 10.9004 23.5953 60.4709
N=25 NetGGM (p = 0.5) (101.2909) (718.8357) (3062.2584)
) 17.3498 50.6574 308.0480
NetGGM (line) (319.7095) (1210.2413) (11031.5613)
D&C T 10.4738 282.5218 541.5241
(206.9460) (8634.6486) (26244.6776)
D&C I 10.3181 281.9859 539.7789
(205.4229) (8363.1977) (22503.2595)
0.9815
G-ISTA (0.0513)
Number of agents m 5 10 20
— 10.2981 20.1145 61.7357
NetGGM (p = 0.9) (43.7608) (130.9594) (1736.4533)
_ _ 12.5014 30.7408 71.0667
N =100 NetGGM (p = 0.5) (59.6681) (475.2664) (1993.2196)
) 18.1808 57.6531 312.7071
NetGGM (line) (163.9079) (775.9505) (7117.7892)
D&C 1 0.2916 39.5273 262.1904
(0.0347) (4372.2945) (17539.3305)
0.3012 39.6439 261.6074
D&C T (0.0333) (4390.4094) (16182.8145)
Random model Methods CPU time (s)
0.6803
G-ISTA (0.0488)
Number of agents m 5 10 20
— 6.9368 14.5805 58.6180
NetGGM (p = 0.9) (54.5397) (155.1912) (2418.4794)
9.3587 18.7734 61.8095
N =25 NetGGM (p = 0.5) (77.3082) (177.8163) (2293.8800)
) 13.7527 49.5722 274.0014
NetGGM (line) (178.8802) (1119.4247) (10676.5477)
D&C 1 32.6488 94.4452 573.9397
(563.2589) (1159.9948) (1822.7583)
DYC 11 32.6147 95.6593 575.3351
(571.9648) (1087.2280) (2492.2283)
0.6937
G-ISTA (0.0267)
Number of agents m 5 10 20
5.9506 14.0879 16.6213
NetGGM (p = 0.9) (11.7812) (73.8083) (1219.8495)
_ _ 8.3510 22.4274 56.1714
N =100 NetGGM (p = 0.5) (19.4260) (108.4904) (1543.4996)
) 12.0197 36.6198 220.6651
NetGGM (line) (38.4656) (302.9742) (4541.1462)
DLC 1 12.4499 31.9262 275.9662
(313.0276) (2657.2532) (7110.5214)
DLC 1T 12.4423 31.1597 277.2202

(307.0222) (2532.3115) (7081.5730)
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