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Abstract

Covariance matrix estimation is a funda-
mental problem in multivariate data anal-
ysis. In many situations, it is often ob-
served that variables exhibit a positive lin-
ear dependency, indicating a positive linear
correlation. This paper tackles the chal-
lenge of estimating covariance matrices with
positive correlations in high-dimensional set-
tings. We propose a positive definite thresh-
olding covariance estimation problem that
includes nonconvex sparsity penalties and
nonnegative correlation constraints. To ad-
dress this problem, we introduce a multi-
stage adaptive estimation algorithm based on
majorization-minimization (MM). This algo-
rithm progressively refines the estimates by
solving a weighted `1-regularized problem at
each stage. Additionally, we present a com-
prehensive theoretical analysis that charac-
terizes the estimation error associated with
the estimates generated by the MM algo-
rithm. The analysis reveals that the error
comprises two components: the optimization
error and the statistical error. The optimiza-
tion error decreases to zero at a linear rate,
allowing the proposed estimator to eventually
reach the oracle statistical rate under mild
conditions. Furthermore, we explore various
extensions based on the proposed estimation
technique. Our theoretical findings are sup-
ported by extensive numerical experiments
conducted on both synthetic and real-world
datasets.

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

1 INTRODUCTION

The covariance matrix plays a crucial role in vari-
ous fields of science and engineering, including dimen-
sion reduction (Bishop and Nasrabadi, 2006), vari-
able screening (Ke et al., 2014), portfolio optimization
(Markowitz and Todd, 2000; Zhao and Palomar, 2018;
Zhao et al., 2019), transcription analysis (Schäfer and
Strimmer, 2005), and so on. However, the covariance
matrix is not directly observable. Therefore, develop-
ing efficient methods to accurately estimate this quan-
tity is an important task in multivariate data analy-
sis (Bai and Shi, 2011; Fan et al., 2016; Ebadi et al.,
2022). One of the most commonly used estimators is
the sample covariance matrix (SCM), which performs
well in low-dimensional contexts where the sample size
significantly exceeds the number of variables. How-
ever, SCM becomes less effective in high-dimensional
settings (Zhou et al., 2011; Pourahmadi, 2013; Tong
et al., 2014). To improve the accuracy of large covari-
ance matrix estimation, structural regularization is of-
ten employed to achieve a consistent estimator (Peter
J. Bickel and Elizaveta Levina, 2008; El Karoui, 2008;
Lam and Fan, 2009; Rothman, 2012).

In many applications, variables frequently demon-
strate positive (or nonnegative) linear dependency, in-
dicating a positive (or nonnegative) correlation. This
positive correlation establishes a distinct structure in
the covariance matrix. If this structure can be effec-
tively integrated into the estimation process, it could
lead to a more accurate covariance estimator, thereby
enhancing the performance of subsequent tasks. For
instance, in finance, numerous empirical studies sug-
gest that assets often exhibit similar movement pat-
terns due to common factors such as market condi-
tions and economic influences (Agrawal et al., 2022;
Zhou et al., 2022). A better portfolio is more likely to
be achieved when covariance matrix estimation takes
into account these positive correlations (Agrawal et al.,
2022). In psychometrics, individuals with negative
self-views tend to display consistent behavior patterns,
making them more predictable compared to those with
positive self-views (Malle and Horowitz, 1995). There-
fore, a covariance matrix that acknowledges positive
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correlations can assist in the design of timely mental
health interventions (Lauritzen et al., 2019). More-
over, species with similar traits often exhibit high pos-
itive correlations (Kemp and Tenenbaum, 2009), which
is essential for biological reasoning. For species with
similar environmental adaptations, estimating a pos-
itive covariance matrix improves classification perfor-
mance (Lake and Tenenbaum, 2010).

In high-dimensional estimation, most variables are of-
ten uncorrelated or weakly correlated, implying that
many entries in the true covariance matrix are zero
or nearly zero. To exploit this structure, sparsity is
commonly introduced as a key assumption (Bien and
Tibshirani, 2011), which reduces the complexity of co-
variance estimation. To enable flexible sparsity selec-
tion, sparsity regularization methods have been pro-
posed for sparse covariance matrix estimation (Xia
et al., 2023; Zou and Zhao, 2024; Xia et al., 2024).
In covariance estimation with a nonnegative correla-
tion constraint, the constraint itself can enforce some
zero elements (Agrawal et al., 2022). However, it can-
not adjust the sparsity levels to specific values, a fea-
ture that is often sought in practice (Lam and Fan,
2009; Bien and Tibshirani, 2011). Consequently, spar-
sity regularization techniques have also been explored
in the context of nonnegative covariance estimation
(Ying et al., 2023).

In this paper, we study the problem of covariance ma-
trix estimation with nonnegative correlations in high-
dimensional contexts. The main contributions are
summarized as follows:

• We consider a positive definite thresholding co-
variance estimation problem that features non-
convex sparsity penalties and nonnegative corre-
lation constraints. To solve this problem, we pro-
pose an adaptive method based on majorization-
minimization (MM), which consists of multiple
stages. In the first stage, we solve an `1-
regularized positive definite covariance estimation
problem, yielding an initial estimate. In the
subsequent stages, we iteratively refine this ini-
tial estimate by solving a series of adaptive `1-
regularized problems. To solve the resultant reg-
ularized problems, we develop a proximal gradient
descent (PGD) algorithm.

• We establish theoretical guarantees on the estima-
tion error of the proposed method, which consists
of two terms: optimization error and statistical
error. The optimization error decays to zero at
a linear rate, indicating that the estimate is re-
fined iteratively in subsequent stages, while the
statistical error does not decrease during itera-
tions and takes the order of

√
s
n , i.e., the oracle

rate, where n and s denote the sample size and
number of nonzero elements of the underlying co-
variance matrix, respectively.

• Experiments on synthetic and financial time-
series data demonstrate that our method outper-
forms state-of-the-art techniques in estimating the
covariance matrix. Our method achieves a better
estimation result for the covariance matrix, which
further supports our theoretical analysis.

2 RELATED WORK

Sparse Covariance Matrix Estimation. Among
the techniques for estimating sparse covariance ma-
trices, thresholding is a classic and straightforward
approach. This method promotes sparsity by either
directly setting smaller elements in the SCM to zero
(Bickel, Peter J. and Levina, Elizaveta, 2008; Cai and
Liu, 2011) or by incorporating a penalty term into the
least squares formulation (Fan and Li, 2001; Rothman
et al., 2009; Zhang, 2010; Cai et al., 2011). While co-
variance estimators that utilize thresholding can effec-
tively enhance sparsity, they do not guarantee that the
covariance matrix will be positive (semi)definite with
finite samples, which is an essential characteristic in
many applications (Fan et al., 2016). To address this
limitation, regularization techniques have been em-
ployed to ensure the positive definiteness of covariance
estimators under thresholding. For instance, methods
such as applying an eigenvalue constraint (Xue et al.,
2012; Liu et al., 2014) or utilizing a logarithmic bar-
rier penalty (Rothman, 2012) has been introduced to
enhance a soft-thresholding estimator.

Sparse Precision Matrix Estimation. In addition
to directly pursuing sparsity in the covariance matrix,
another common approach involves imposing struc-
tural assumptions on the inverse covariance matrix
(Dempster, 1972; Yuan, 2010; Cai et al., 2016), which
is referred to as the precision matrix. For example, the
graphical lasso (Friedman et al., 2008; Mazumder and
Hastie, 2012), which is based on the assumption of a
sparse precision matrix, allows for the estimation of a
covariance matrix in high-dimensional settings. Under
the assumption of Gaussian maximum likelihood (ML)
estimation, the problem is also known as the Gaus-
sian graphical model (Meinshausen and Bühlmann,
2006; Yuan and Lin, 2007; Banerjee et al., 2008). Un-
like methods that estimate sparse covariance matrices
by leveraging the sparse correlation properties among
variables, sparse precision matrix estimation relies on
the assumption that the partial correlations among
variables are sparse. However, this approach does not
necessarily yield a sparse covariance matrix.

Precision Matrix Estimation with Nonpositive
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Partial Correlations. An intriguing property re-
lated to positive correlation is multivariate total posi-
tivity of order 2 (MTP2) (Fortuin et al., 1971; Karlin
and Rinott, 1980; Colangelo et al., 2005). A Gaus-
sian random variable is MTP2 if its precision matrix
is a symmetric M -matrix, meaning all off-diagonal ele-
ments are nonpositive (S. Karlin and Y. Rinott, 1983),
which corresponds to nonnegative partial correlations.
Notably, this structure directly implies that the co-
variance matrix has nonnegative off-diagonal elements,
ensuring nonnegative correlations. This property has
driven extensive research on (sparse) precision ma-
trix estimation under the MTP2 constraint (Lauritzen
et al., 2019; Soloff et al., 2020; Agrawal et al., 2022;
Ying et al., 2023).

A precision matrix satisfying the MTP2 constraint is
a sufficient but not necessary condition for ensuring
nonnegative correlations, except in the bivariate case.
As a result, imposing the MTP2 constraint in preci-
sion matrix estimation may overly restrict the feasible
domain when the primary objective is to obtain a co-
variance matrix with nonnegative correlations. This
distinction can be illustrated through the following ex-
ample. Consider a nonnegative covariance matrix:

Σ =

 2 0 1
0 2 1
1 1 3

 .

When we compute its inverse, we obtain:

Σ−1 =

 0.625 0.125 −0.250
0.125 0.625 −0.250
−0.250 −0.250 0.500

 .

In this case, not all partial correlations are nonpositive,
highlighting the limitations of the MTP2 constraint in
dimensions larger than two.

Covariance Matrix Estimation with Nonnega-
tive Correlations. In (Zhou et al., 2022; Fatima
et al., 2022), the authors proposed a method for es-
timating a covariance matrix with nonnegative corre-
lations using Gaussian ML estimation. In (Zhou et al.,
2022), a low-rank structure was further applied to the
covariance matrix to improve the estimation perfor-
mance. However, the ML-based formulation is gen-
erally not well-suited for high-dimensional estimation
scenarios, where the sample covariance matrix is sin-
gular. This singularity causes the objective function
to be unbounded from below. Additionally, the Gaus-
sian ML estimation problem is nonconvex, which poses
significant challenges in analyzing the properties of its
solutions.

3 NOTATION

Lower-case and upper-case letters represent scalars.
Boldface lower-case and upper-case letters denote vec-
tors and matrices, respectively. Xij refers to the (i, j)-
th element of the matrix X. Rn denotes the set of n×1
vectors, and Rm×n denotes the set of m× n matrices.
0 stands for the all-zero vector or matrix. 1 stands for
the all-one vector. I stands for the identity matrix.

X � 0 denotes that X is symmetric positive semi-
definite, while X � 0 denotes that X is symmetric
positive definite. X ≥ 0 represents each element in
X is nonnegative. X>, X−1, and det (X) denote the
transpose, inverse, and determinant of X, respectively.
λmax (X) and λmin (X) represent the maximum and
minimum eigenvalues of X, respectively. ‖X‖F and
‖X‖2 denote the Frobenius and spectral norms, re-
spectively. ‖X‖max and ‖X‖min are used to denote
the max-absolute-value and minimum-absolute-value
norms, respectively. The Frobenius inner product is
defined as 〈X,Y 〉 =

∑
i,j XijYij .

For an index set S, we use card(S) to represent its
cardinality, Sc to denote its complement, and XS to
denote the matrix whose (i, j)-th element is equal to
Xij if (i, j) ∈ S, and zero, otherwise.

f ′ represents the derivative of a univariate function
f . ∇f denotes the gradient of a multivariate function
f . Given functions f (x) and g (x), we use f (x) &
g (x) if f (x) ≥ cg (x), f (x) . g (x) if f (x) ≤ cg (x),
and f (x) � g (x) if cg (x) ≤ f (x) ≤ Cg (x) for some
positive constants c and C. Op (·) is used to denote
being bounded in probability.

4 PROBLEM FORMULATION

Consider a zero-mean random vector x ∈ Rd follow-
ing a Gaussian distribution x ∼ N (0,Σ∗). Given n
independent and identically distributed observed data
instances {xi}ni=1, the SCM estimator is computed as
S = 1

n−1

∑n
i=1 xix

>
i . Our goal is to estimate Σ?

which has nonnegative correlations. We consider the
following estimation problem:

min
Σ

1

2
‖Σ − S‖2F − τ log det (Σ) +

∑
i6=j

pλ (Σij)

s.t. Σ � 0, Σ ≥ 0,

(1)

The objective in (1) consists of three terms: the first
term is a data fidelity term; the second one is a log-
barrier regularizer with τ ≥ 0 to ensure the positive
definiteness of the estimates, i.e., Σ � 0; and the third
one is a sparsity-inducing regularizer, where pλ with
λ ≥ 0 is a nonconvex function satisfying the following



Large Covariance Matrix Estimation with Nonnegative Correlations

assumptions. The SCM in (1) serves as a pilot es-
timator, which can be substituted with other alterna-
tives depending on the specific context (Avella-Medina
et al., 2018).
Assumption 1. The function pλ, defined on the do-
main [0,+∞), satisfies the following conditions:

1. pλ (t) is monotonically nondecreasing and smooth
on [0,+∞) with pλ (0) = 0, and is differentiable
almost everywhere on [0,+∞).

2. p′λ (t) is monotonically nonincreasing on [0,+∞)
with p′λ (0) = λ.

3. There exists a constant α such that p′λ (αλ) ≥√
2
2 λ, and another constant γ > 0 such that
p′λ (t) = 0 for any t ≥ γλ.

Functions satisfying the above assumptions are com-
monly referred to as folded concave penalty functions.
Common examples include the smooth clipped abso-
lute deviation (SCAD) penalty (Fan and Li, 2001) and
the minimax concave penalty (MCP) (Zhang, 2010).

5 OPTIMIZATION ALGORITHM

In this section, we propose an algorithm based on
the generic majorization-minimization (MM) frame-
work (Hunter and Lange, 2004; Sun et al., 2016; Fan
et al., 2018) to address the estimation problem (1).
The algorithm resolves the original nonconvex estima-
tion problem by a series of convex subproblems, whose
objective serves as an upper bound for the original ob-
jective.

5.1 A Majorization-Minimization Algorithm

Based on the MM procedure, we can derive a weighted
`1-norm surrogate for the sparsity inducing regular-
izer at each iteration, leading to a convex subproblem.
By repeating this process, multiple stages are estab-
lished, where each one refines the estimate from pre-
vious stage. Specifically, at the k-th stage, we obtain
the estimate Σk by solving the following convex opti-
mization problem:1

min
Σ

1

2
‖Σ − S‖2F − τ log det (Σ) +

∑
i6=j

Λk
ijΣij

s.t. Σ � 0, Σ ≥ 0,

(2)

where, for i 6= j, Λk
ij = p′λ

(
Σk−1

ij

)
with Σk−1 denoting

the solution from the (k − 1)-th stage. It is easy to see
that whenever the estimate, Σk−1, exhibits a larger

1Since Σij is nonnegative, the absolute value sign is
reduced.

Algorithm 1 MM-based multistage algorithm for (1)
Input: S, τ , λ;
Initialize: Σ0 = I;
for k = 1, 2, . . . ,K do

Λk
ij = p′λ

(
Σk−1

ij

)
;

obtain Σk by solving (2);
k = k + 1;

end
Output: ΣK .

value for its (i, j)-th element, according to Assump-
tion 1, a smaller Λk

ij should be allocated in the next
stage. This multi-stage convex relaxation algorithm
is summarized in Algorithm 1. We choose Σ0 = I,
which implies Λ1

ij = p′λ
(
Σ0

ij

)
= λ. In this case, this

optimization problem becomes an `1-regularized posi-
tive definite nonnegative covariance matrix estimation
problem.

5.2 Proximal Gradient Descent

The problem (2) within the multistage algorithm is
convex, which can be solved by many methods. In this
paper, we adopt the PGD algorithm (Rolfs et al., 2012)
with a backtracking line search procedure to solve it.

We first rewrite the objective in problem (2) into the
following compact form:

fk (Σ) =
1

2

∥∥Σ − S +Λk
∥∥2
F
− τ log det (Σ) ,

where we define Λk
ii = 0 in Λk. Denote the t-th iterate

of the PGD algorithm in solving the k-th stage prob-
lem as Σk

t . In the (t+ 1)-th iteration, an isotropic
quadratic approximation of fk (Σ) at Σk

t is derived
as:

fk,t(Σ) = fk
(
Σk

t

)
+
〈
∇fk

(
Σk

t

)
,Σ −Σk

t

〉
+

φt

2

∥∥Σ −Σk
t

∥∥2
F

=
φt

2

∥∥Σ −Σk
t + φ−1

t ∇fk
(
Σk

t

)∥∥2
F
+ const.,

where φt > 0. We update Σk
t+1 by solving the follow-

ing problem:

min
Σ

1

2

∥∥Σ −Σk
t + φ−1

t ∇fk
(
Σk

t

)∥∥2
F

s.t. Σ � 0, Σ ≥ 0.
(3)

To guarantee the positive definiteness of Σk
t+1, we

solve (3) based on a backtracking line search proce-
dure on φt, i.e., finding a φt such that fk,t

(
Σk

t+1

)
≥

fk
(
Σk

t+1

)
. The obtained φt ensures Σk

t+1 is positive
definite. Then, the update of Σk

t+1 is expressed as:

Σk
t+1 = max

(
Σk

t − φ−1
t ∇fk

(
Σk

t

)
,0
)
, (4)
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Algorithm 2 Proximal gradient descent for (2)
Input: Σk−1,Λk−1;
Initialize: Σk

0 = Σk−1, φ0 > 0, ζ > 1, t = 0;
repeat

repeat
Σk

t+1 = max
(
Σk

t − φ−1
t ∇fk

(
Σk

t

)
,0
)
;

if fk,t
(
Σk

t+1

)
< fk

(
Σk

t+1

)
or Σk

t+1 � 0 then
φt = ζφt;

end
until fk,t

(
Σk

t+1

)
≥ fk

(
Σk

t+1

)
and Σk

t+1�0;
φt+1 = max

(
φ0, ζ

−1φt

)
;

t = t+ 1;
until some convergence criterion is met;
Output: Σk = Σk

t .

where the max operator max (·, ·) is applied elemen-
twise. The overall PGD algorithm is summarized in
Algorithm 2. At the k-th stage, we set Σk

0 = Σk−1,
which acts as warm start for the inner problem (2) to
accelerate the convergence. The minimizer for problem
(2) is guaranteed by the globally strong convexity of
the problem (2). The theoretical convergence property
of Algorithm 2 is described in the following theorem.
Theorem 1. The sequence

{
Σk

t

}
t≥0

established by Al-
gorithm 2 converges to the optimal solution of problem
(2) for k = 1, . . . ,K.

6 ESTIMATION ERROR ANALYSIS

In this section, we first introduce some necessary as-
sumptions for theoretical analysis. Then, we provide
the statistical properties of the proposed estimator.

6.1 Technical Assumptions

Let Σ? denote the true covariance matrix. We define
the support set of Σ? as S =

{
(i, j) | Σ?

ij 6= 0, i 6= j
}

,
and use s to represent its cardinality, i.e., s = card (S).
Moreover, we denote the set of diagonal elements in
Σ? as I = {(i, i) | i ∈ {1, 2, . . . , d}}. In the following,
we impose a mild assumption on the true covariance
matrix Σ?.
Assumption 2. The true covariance matrix Σ? sat-
isfies

min
(i,j)∈S

Σ?
ij ≥ (α+ γ)λ & λ,

where α and γ are constants defined in Assumption 1.

Assumption 2, commonly referred to as minimum sig-
nal strength assumption, has been widely applied in
the analysis of nonconvex penalized problems (Sun
et al., 2018; Wei and Zhao, 2023; Ying et al., 2023).
It is rather mild, as the regularization parameter λ in

our statistical analysis takes the order of
√

log d
n , which

could be very small when the sample size n increases.

6.2 Theoretical Results

We now present the main theorems related to the sta-
tistical convergence rate of our proposed estimator,
which demonstrates the estimation error of solution
path

{
Σk
}
k≥1

generated from Algorithm 1.
Theorem 2. Under Assumptions 1 and 2, taking the
regularization parameter λ �

√
log d
n , then the Σk gen-

erated by Algorithm 1 satisfies the following property:∥∥Σk −Σ?
∥∥
F
≤ δk−1

∥∥Σ1 −Σ?
∥∥
F︸ ︷︷ ︸

optimization error

+

1

1− δ

(
‖(Σ? − S)S∪I‖F + τ

∥∥∥(Σ?)
−1
∥∥∥
F

)
︸ ︷︷ ︸

statistical error

,

for k = 1, . . . ,K with high probability, where δ ∈ (0, 1)
is the contraction parameter.

Theorem 2 establishes that the estimation error be-
tween the estimated covariance matrix Σk and the
true covariance matrix Σ? can be upper bounded by
two terms: optimization error and statistical error.
Now, we provide the explicit statistical rate of con-
vergence under the sub-Gaussian case.
Corollary 3. Let x be a zero-mean sub-Gaussian
random vector with covariance matrix Σ?. Under
the same conditions in Theorem 2, if λ �

√
log d
n ,

τ .
√

s
n

∥∥∥(Σ?)
−1
∥∥∥−1

F
, then the solution Σ1 satisfies

∥∥Σ1 −Σ?
∥∥
F
.

√
s log d

n
,

with high probability.

Corollary 3 is a direct consequence of Theorem 2 for
k = 1. It is known that Σ1 is the optimal solution
of the first subproblem of (1). Due to the contraction
parameter δ induced by the MM-based convex relax-
ation algorithm, to achieve the oracle rate, we should
make the number of stages K large enough. Then the
following corollary can be provided.
Corollary 4. Let x be a zero-mean sub-Gaussian
random vector with covariance matrix Σ?. Under
the same conditions in Theorem 2, if λ �

√
log d
n ,

τ .
√

s
n

∥∥∥(Σ?)
−1
∥∥∥−1

F
, and K & log (λ

√
n) & log log d,

then the solution ΣK satisfies∥∥ΣK −Σ?
∥∥
F
= Op

(√
s

n

)
.
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Corollary 4 implies that under weak assumptions, we
just need to solve no more than approximately log log d
convex optimization problems in (2) to achieve the sta-
tistical rate of Op

(√
s
n

)
, which is the oracle rate2.

7 EXTENSIONS

7.1 Correlation Matrix Estimation

Compared to the covariance matrix, the correlation
matrix is scale-invariant because its diagonal elements
are fixed to be one. Hence, directly estimating the
correlation matrix is more efficient for capturing lin-
ear correlations (Rothman et al., 2008; Lam and Fan,
2009; Cui et al., 2016; Liu et al., 2014). In this sec-
tion, we show that the covariance estimation method
discussed in previous sections can be extended to es-
timate correlation matrices with nonnegative corre-
lations. We define the true correlation matrix as
Γ ? = Diag (Σ?)

−1/2
Σ?Diag (Σ?)

−1/2. Given the
SCM S, the sample correlation matrix is computed as
R = Diag (S)

−1/2
SDiag (S)

−1/2. Then, we consider
the following correlation matrix estimation problem:

min
Γ

1

2
‖Γ −R‖2F − τ log det (Γ ) +

∑
i6=j

pλ (Γij)

s.t. Γ � 0, Γ ≥ 0, Diag(Γ ) = I,

(5)

where the constraint Diag(Γ ) = I is imposed to guar-
antee the result Γ to be a correlation matrix.

The MM-based multistage algorithm in Algorithm 1 is
applicable to problem (5), which generates a sequence{
Γ k
}
k≥1

. We start the algorithm with Γ 0 = I, lead-
ing to p′λ

(
Γ 0
ij

)
= λ. For each Γ k, a subproblem of

(5) is solved by the PGD algorithm, which generates{
Γ k
t

}
t≥0

. In the (t+ 1)-th iteration of PGD, the up-
date of Γ k

t+1 is given by[
Γ k
t+1

]
ij

=

{
max

([
Γ k
t

]
ij
− φ−1

t

[
∇fk

(
Γ k
t

)]
ij
, 0
)

i 6= j

1 i = j
.

7.2 Covariance Matrix Estimation for
Heavy-Tailed Distributions

The covariance estimator we have discussed so far re-
lies on the assumption of Gaussian or sub-Gaussian
distributions, which is typical in many cases. How-
ever, certain types of real-world data are believed to
follow heavy-tailed distributions (Catoni, 2012; Sun

2The oracle rate refers to the statistical convergence rate
of the estimator, which knows the true support set S ∪ I
in advance.

et al., 2015; Wei and Minsker, 2017). For instance,
in finance, the returns of financial assets often ex-
hibit heavy-tailed distributions, indicating that the
probability of extreme returns is significantly higher
than what a normal distribution would predict (Cont,
2001). Similarly, in genetic analysis, gene expression
levels exhibit a heavy-tailed distribution, with a small
subset of genes displaying significantly higher expres-
sion levels than the majority, leading to extreme val-
ues (Liu et al., 2003). Consequently, developing robust
covariance estimation procedures that mitigate sensi-
tivity to these distributional characteristics is crucial.

In this section, we address the problem of covariance
estimation for heavy-tailed distributions. We assume
x follows a heavy-tailed distribution with an unknown
mean µ? and covariance matrix Σ?. Specifically, we
represent x as

x = µ? + e,

where e is a heavy-detailed error term. Given
n observations {xi}ni=1, we construct a new sam-
ple using pairwise differences: {xi − xj}1≤i<j≤n =

{x̃1, x̃2, . . . , x̃ñ}, where ñ = n (n− 1) /2. Each x̃i fol-
lows a heavy-detailed distribution with mean zero and
covariance 2Σ?. Using this transformed sample, we
define the following loss function (Ke et al., 2019):

Lβ (Σ) =
1

2ñ

ñ∑
i=1

d∑
k,l=1

hβ

(
Σkl −

1

2
x̃ikx̃il

)
,

where hβ is the Huber loss function (Huber and
Ronchetti, 2011), defined as

hβ (x) =

{
x2

2 , |x| ≤ β,

β |x| − β2

2 , |x| > β,

for some nonnegative parameter β.

The covariance matrix is estimated based on the fol-
lowing problem:

min
Σ

Lβ (Σ)− τ log det (Σ) +
∑
i 6=j

pλ (Σij)

s.t. Σ � 0, Σ ≥ 0.

(6)

The algorithm we proposed in Section 5 is also appli-
cable to this problem.

7.3 Covariance Matrix Estimation with
General Correlation Prior

While the focus of this work has been on estimating co-
variance matrices under nonnegative correlation con-
straints, the proposed estimation framework can be
extended to accommodate more general prior informa-
tion on correlation signs. In many applications, cer-
tain variables are expected to exhibit either positive



Yixin Yan, Qiao Yang, Ziping Zhao

or negative correlations due to domain-specific knowl-
edge. For example, in genetics, gene expressions may
be governed by regulatory mechanisms that impose
structured sign constraints on the correlations (Jeze-
quel et al., 2013; Anastasiadi et al., 2018).

To incorporate such general correlation sign priors, one
can modify the constraint set in problem (3) to ex-
plicitly enforce both positive and negative correlation
structures. Specifically, for a given sign prior matrix
M ∈ {−1, 0, 1}d×d, where Mii = 1, i = 1, . . . , d, and
for i 6= j, Mij = 1 indicates a positive correlation,
Mij = −1 enforces a negative correlation, and Mij = 0
imposes no sign restriction, the covariance estimation
problem can be formulated as:

min
Σ

1

2
‖Σ − S‖2F − τ log detΣ +

∑
i6=j

pλ(Σij)

s.t. Σ � 0, M �Σ ≥ 0,

(7)

where � denotes the Hadamard product. The above
formulation naturally generalizes our previous ap-
proach, allowing for a broader class of structured con-
straints beyond purely nonnegative correlations. The
MM-based multistage estimation algorithm can be di-
rectly extended to solve this problem by incorporating
the sign priors into the PGD steps.

8 NUMERICAL EXPERIMENTS

In this section, we evaluate our proposed estimator
against existing methods in high-dimensional settings
using both synthetic and real financial data. The fol-
lowing benchmarks are used for comparison.

• SCM: the sample covariance matrix estimator;
• PDTE_L1: the positive definite thresholding es-

timator with the `1 penalty (Rothman, 2012);
• PDTE_FC: the positive definite thresholding es-

timator with a folded concave penalty (Wei and
Zhao, 2023);

• MLE_L1: the ML estimator with the `1-norm
penalty (Bien and Tibshirani, 2011);

• MLE_FC: the ML estimator with a folded con-
cave penalty (Phan et al., 2017);

• MLE_MTP2: the ML estimator with MTP2 con-
straint (Slawski and Hein, 2015);

• MLE_MTP2_L1: the ML estimator with MTP2

constraint and the `1 penalty (Cai et al., 2024);
• MLE_MTP2_FC: the ML estimator with MTP2

constraint and a folded concave penalty (Ying
et al., 2023);

• MLE_NN: the ML estimator with the nonnega-
tive correlation constraint (Zhou et al., 2022);

• PDTE_NN (prop.): the proposed positive defi-
nite thresholding estimator with the nonnegative
correlation constraint;

• PDTE_NN_FC (prop.): the proposed positive
definite thresholding estimator with the nonneg-
ative correlation constraint and a folded concave
penalty;

In terms of the folded concave penalty in the above
methods, we choose the MCP function3 and set the
parameter ξ = 2.7 in all experiments. In the simula-
tion, the SCM S is singular. Since the existence of so-
lutions for MLE_L1, MLE_FC, and MLE_NN relies
S to be positive definite we replace S in these methods
by S+ εI, where ε is a positive tuning parameter. We
choose the parameters τ , λ, and ε by five-fold cross-
validation. All estimation methods are implemented
in Python and executed on a system with an Intel i7
2.90 GHz CPU.

8.1 Synthetic Data

We generate synthetic samples of size n = 50
based on Gaussian distributions with dimensions d =
{100, 200}, which has zero mean and covariance ma-
trices Γ ? with nonnegative correlations. We consider
the following three structures for Γ ?, which are com-
monly used in the literature (Rothman et al., 2009;
Xue et al., 2012; Cui et al., 2016):

• Banded structure:

Γ ?
ij =

{
1− |i−j|

10 |i− j| ≤ 10,

0 otherwise.

• Block structure: The indices 1, 2, . . . , d are parti-
tioned into 10 equal-sized ordered groups with

Γ ?
ij =


1 i = j,

0.6 i and j (i 6= j) are in the same group,
0 otherwise.

• Toeplitz structure: Γ ?
ij = 0.75|i−j|.

Among the three structures, the first two covariance
structures are sparse, while the third one is approxi-
mately sparse. The effectiveness of the estimators is
evaluated by the estimation error between the esti-
mated and true covariance matrices, using both the
Frobenius norm and the spectral norm. Additionally,
the performance of variable selection is evaluated us-
ing the false positive rate (FPR) and the true positive

3The MCP function pλ is defined as: pλ(x) =

λ
∫ |x|
0

max
(
1− u

λξ
, 0
)
du with ξ ≥ 1.
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Table 1: Quantitative comparison among different methods for the banded matrix structure.

SCM PDTE_L1 PDTE_FC MLE_L1 MLE_FC MLE_MTP2 MLE_MTP2_L1 MLE_MTP2_FC MLE_NN PDTE_NN
(prop.)

PDTE_NN_FC
(prop.)

d = 100, n = 50

‖·‖F 14.3198 (0.1167) 9.4292 (0.1050) 9.0993 (0.0991) 9.7818 (0.1112) 9.3832 (0.1319) 26.9979 (0.0019) 24.4005 (0.0021) 23.4577 (0.0016) 9.8749 (0.1023) 9.9850 (0.1153) 8.5741 (0.0936)

‖·‖2 7.7214 (0.1485) 4.4837 (0.0882) 4.3388 (0.0910) 4.9231 (0.0869) 4.3042 (0.1458) 23.3511 (0.0011) 20.4007 (0.0018) 19.1509 (0.0021) 5.5013 (0.1231) 5.7964 (0.1229) 4.1201 (0.0968)

FPR NA 0.1596 (0.0049) 0.0592 (0.0038) 0.2374 (0.0022) 0.0601 (0.0431) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.4132 (0.0103) 0.5162 (0.0051) 0.0279 (0.0068)

TPR NA 0.8693 (0.0403) 0.8905 (0.0037) 0.8297 (0.0123) 0.8797 (0.0364) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.9698 (0.0035) 0.9714 (0.0016) 0.9060 (0.0032)

Time – 6.21 19.88 12.63 51.26 37.13 4.39 17.92 81.2356 0.98 1.02

d = 200, n = 50

‖·‖F 28.0354 (0.1408) 16.4932 (0.1525) 14.2286 (0.1081) 14.5659 (0.1809) 14.2989 (0.1043) 41.1309 (0.0013) 30.5522 (0.0025) 29.6237 (0.0019) 19.8766 (0.2163) 21.1721 (0.1765) 13.6935 (0.1151)

‖·‖2 12.1778 (0.1606) 5.5429 (0.1880) 5.2532 (0.0994) 5.7399 (0.0684) 5.3537 (0.0871) 36.2046 (0.0021) 23.5039 (0.0039) 22.0879 (0.0022) 6.9981 (0.1568) 9.0911 (0.2175) 5.2259 (0.1233)

FPR NA 0.1706 (0.0026) 0.0210 (0.0038) 0.1334 (0.0082) 0.0240 (0.0213) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.4283 (0.0031) 0.5350 (0.0024) 0.0147 (0.0019)

TPR NA 0.8274 (0.0021) 0.8669 (0.0030) 0.8031 (0.0125) 0.8049 (0.0256) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.9536 (0.0005) 0.9632 (0.0009) 0.8829 (0.0022)

Time – 16.26 29.06 43.46 143.65 485.71 28.80 131.74 689.53 2.53 5.21

rate (TPR), which are defined as follows:

FPR =
#
{
(i, j) : Γij 6= 0&Γ ?

ij = 0
}

#
{
(i, j) : Γ ?

ij = 0
} ,

TPR =
#
{
(i, j) : Γij > 0&Γ ?

ij > 0
}

#
{
(i, j) : Γ ?

ij > 0
} .

All the reported results are averaged over 100 Monte
Carlo simulations.

In Table ??, we present the estimation results for the
banded covariance matrix structure, with standard er-
rors provided in parentheses. Our proposed estimators
show the best performance in both cases. In Figure 1,
we illustrate the estimation performance using corre-
lation graphs. Each node represents a variable, with
blue lines indicating a positive association between
variables and red lines indicating a negative relation-
ship. The intensity of the color reflects the strength of
the association, with darker colors signifying stronger
connections. Compared with other types of estima-
tors, the proposed PDTE_NN_FC estimator achieves
better estimation results.

8.2 Real Data

We further conduct experiments on financial time-
series data. A commonly used approach to assess
the quality of the estimated covariance matrix is by
evaluating the risk of portfolios constructed from it
(Markowitz, 1952). A covariance estimate is consid-
ered of higher quality if it results in lower portfolio
return volatility (i.e., standard deviation). Following
(Xue et al., 2012), we focus on the global minimum
variance portfolio (GMVP) under the no-short sales
constraint, formulated as:

min
w∈Rd

w>Σw

s.t. w>1 = 1, w ≥ 0.

This optimization problem can be efficiently solved us-
ing CVX (Grant and Boyd, 2014).

We collect historical monthly stock prices for the S&P
100 Index components over a 240-month period (De-
cember 2002 to December 2022). After removing miss-
ing data, we obtain monthly returns for 78 companies
(d = 78). To ensure the robustness of our results, we
construct 100 datasets by selecting a random starting
date, each containing the monthly returns of 78 stocks
over 120 consecutive trading months. We then con-
duct experiments on each dataset using a rolling win-
dow scheme, where 60 months are used for training
and one month for testing. The performance is evalu-
ated by comparing the monthly volatility of portfolio
returns.

Figure 2 presents the boxplot of the monthly volatility
obtained using the GMVP across different estimators,
along with the uniform portfolio (w = 1/d), which
serves as a heuristic baseline. From the figure, we ob-
serve that the uniform portfolio exhibits the highest
monthly volatility, making it the least effective strat-
egy. Additionally, the SCM, which lacks regulariza-
tion, significantly underperforms compared to regu-
larized methods. Among the regularized estimators,
the proposed PDTE_NN_FC achieves lower volatil-
ity, demonstrating a notable advantage over the alter-
natives.

9 CONCLUSION

This paper has addressed the problem of covariance
matrix estimation with nonnegative correlations in
high-dimensional settings. We have proposed a pos-
itive definite thresholding method incorporating non-
convex sparsity penalties and nonnegative correlation
constraints. To solve this problem, we have developed
a multistage adaptive estimation algorithm based on
the majorization-minimization principle. Theoretical
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Figure 1: Correlation graph for the banded matrix structure with d = 100 and n = 50.

Figure 2: Boxplot of the monthly volatility of GMVP
obtained using different estimators.

analysis has shown that the estimation error consists of
an optimization error and a statistical error, with the
former diminishing at a linear rate, allowing the esti-
mator to achieve the oracle statistical rate under mild
conditions. Numerical experiments on synthetic and
real-world datasets have validated the effectiveness of
our approach, demonstrating its advantages over ex-
isting methods.
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We present further experimental results in Section A in this supplementary materials. Following that, we provide
the proof of Theorem 1 in Section B. Lastly, we establish the statistical properties of the estimator, as outlined
in Theorem 2 and Corollaries 3-4, in Section C.

A ADDITIONAL EXPERIMENTAL RESULTS

In the main part of the paper, we compared the estimation performance in the context of a banded matrix.
Here, we present additional experiments in Tables 2 and 3 to evaluate estimation performance across various
methods for both the block and Toeplitz settings.4 Our proposed method, PDTE_NN_FC, achieves the lowest
estimation error in both the Frobenius and spectral norms, consistent with the results in the banded matrix
setting.

Table 2: Quantitative comparison among different methods for the block matrix structure.

SCM PDTE_L1 PDTE_FC MLE_L1 MLE_FC MLE_MTP2 MLE_MTP2_L1 MLE_MTP2_FC MLE_NN PDTE_NN
(prop.)

PDTE_NN_FC
(prop.)

d = 100, n = 50

‖·‖F 14.3226 (0.0652) 8.4551 (0.0586) 7.8275 (0.0713) 8.7543 (0.1567) 8.1234 (0.0712) 23.5956 (0.0024) 18.1121 (0.0037) 17.7123 (0.0014) 8.3456 (0.0653) 10.5321 (0.0529) 7.1571 (0.0652)

‖·‖2 7.4117 (0.0585) 3.4647 (0.0661) 3.4112 (0.0508) 3.5648 (0.0686) 3.4321 (0.0509) 20.0329 (0.0016) 13.7859 (0.026) 12.2766 (0.0019) 3.4567 (0.0586) 4.2661 (0.0502) 3.3321 (0.0585)

FPR NA 0.1288 (0.0018) 0.0389 (0.0021) 0.1329 (0.0051) 0.0387 (0.0022) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.3327 (0.0053) 0.5037 (0.0028) 0.0269 (0.0022)

TPR NA 0.9846 (0.0132) 0.9861 (0.0005) 0.9647 (0.0158) 0.9862 (0.0006) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.9649 (0.0160) 0.9998 (0.0007) 0.9992 (0.0001)

Time – 3.09 8.89 28.63 39.12 34.85 0.78 8.86 58.78 0.92 0.97

d = 200, n = 50

‖·‖F 28.6502 (0.1564) 17.7789 (0.0451) 15.1874 (0.1601) 17.8794 (0.1958) 15.1234 (0.1602) 33.9022 (0.1565) 26.8044 (0.0452) 23.2931 (0.1603) 19.3456 (0.0566) 22.3415 (0.0291) 13.7436 (0.1563)

‖·‖2 13.5083 (0.1390) 7.2523 (0.0818) 6.8697 (0.1237) 7.6431 (0.1031) 6.8321 (0.1238) 31.5678 (0.1391) 17.4321 (0.0819) 16.8123 (0.1239) 7.4567 (0.0392) 9.9059 (0.0746) 6.5083 (0.1389)

FPR NA 0.1614 (0.0014) 0.1171 (0.0021) 0.1847 (0.0019) 0.1172 (0.0022) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.2849 (0.0021) 0.5469 (0.0023) 0.0215 (0.0023)

TPR NA 0.9967 (0.0127) 0.9969 (0.0004) 0.9891 (0.0030) 0.9970 (0.0005) 0.9999 (0.0001) 0.9999 (0.0001) 0.9999 (0.0001) 0.9893 (0.0022) 0.9996 (0.0001) 0.9994 (0.0002)

Time – 11.06 24.12 110.39 224.56 988.74 39.41 180.16 1010.67 7.89 13.37

Table 3: Quantitative comparison among different methods for the Toeplitz matrix structure.

SCM PDTE_L1 PDTE_FC MLE_L1 MLE_FC MLE_MTP2 MLE_MTP2_L1 MLE_MTP2_FC MLE_NN PDTE_NN
(prop.)

PDTE_NN_FC
(prop.)

d = 100, n = 50

‖·‖F 14.1171 (0.0630) 8.9433 (0.0556) 8.6599 (0.0427) 9.7471 (0.1044) 8.1234 (0.0428) 20.5959 (0.0631) 15.4053 (0.0557) 14.5655 (0.0428) 9.3456 (0.0632) 10.1081 (0.0608) 8.2385 (0.0569)

‖·‖2 6.2553 (0.0851) 3.7761 (0.0693) 3.6271 (0.0382) 3.8367 (0.0390) 3.4321 (0.0383) 19.4093 (0.0852) 14.0043 (0.0694) 13.1192 (0.0384) 4.1267 (0.0853) 4.3249 (0.0803) 3.4224 (0.0541)

Time – 10.34 34.97 49.84 94.56 58.46 2.50 13.78 89.67 0.68 8.19

d = 200, n = 50

‖·‖F 28.2106 (0.0928) 14.0822 (0.0455) 13.4672 (0.0606) 15.3108 (0.1923) 13.1234 (0.0607) 33.5678 (0.0929) 24.4321 (0.0456) 23.4123 (0.0608) 14.3456 (0.0930) 19.0706 (0.0434) 13.1233 (0.0654)

‖·‖2 10.6794 (0.0965) 4.2644 (0.0342) 4.1737 (0.0543) 4.3073 (0.0371) 4.1123 (0.0544) 32.5678 (0.0966) 18.0321 (0.0343) 16.4123 (0.0545) 4.4567 (0.0967) 8.9058 (0.0306) 4.1129 (0.0794)

Time – 37.0484 44.12 121.86 44.56 534.23 12.12 49.78 121.67 7.39 36.07

Figure 3 presents a correlation graph representation of the estimation performance of various methods in the block
matrix setting. Similar to the banded case, the proposed method, PDTE_NN_FC, achieves better estimation
performance than the others.

4FPR and TPR for the Toeplitz matrix structure are not reported because the matrix is not sparse.



Yixin Yan, Qiao Yang, Ziping Zhao

Figure 3: Correlation graph for the block matrix structure with d = 100 and n = 50.

B PROOF OF THEOREM 1

In this section, we prove the convergence result of Algorithm 2.

Define C =
{
Σ ∈ Rd×d | Σ � 0,Σ ≥ 0

}
. Given Σ0 ∈ C,5 we define a sublevel set of the objective function fk in

problem (2) as follows:
Bk = {Σ ∈ C | fk (Σ) ≤ fk (Σ0)} .

For the set of C, we can express it by the intersection of a closed set N , with N the set of nonnegative matrices,
and P, with P the set of positive definite matrices.
Lemma B.1. For all Σ in Bk, there exists m > 0 such that Σ � mI.

Proof. Because of log det (Σ) =
∑d

i=1 λi, the term −τ log det (Σ) in fk dominates the objective as λmin (Σ)

tends to 0. Meanwhile, the term 1
2

∥∥Σ − S +Λk
∥∥2
F

remains bounded below owing to its nonnegativity. Hence,
fk (Σ) tends to positive infinity as λmin (Σ) tends to 0. So, there must exist m > 0 such that Σ � mI for all Σ
in Bk.

We define the proximal step (4) in Algorithm 2 as follows:

Σt (φt) = ΠN
(
Σt − φ−1

t ∇fk (Σt)
)
.

At the t-th iteration, given Σt ∈ Bk, there must exist σ > 0 such that for any φ−1
t ∈ (0, σ), Σt (φt) satisfies

Σt (φt) ∈ P. This is due to Σt is an interior point of P, indicating that there exists ω > 0, such that for any
Σ ∈ P, it satisfies ‖Σ −Σt‖F < ω.

Let φ−1
t < ω

‖∇fk(Σt)‖F
, then

‖Σt (φt)−Σt‖F =
∥∥ΠN

(
Σt − φ−1

t ∇fk (Σt)
)
−ΠN (Σt)

∥∥
F
≤ φ−1

t ‖∇fk (Σt)‖F < ω.

5For simplicity, we omit the superscript k from Σk
t in this section.
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establishing that Σt (φt) ∈ P. The projection ΠN ensures Σt (φt) ∈ N . As a result, Σt (φt) � 0.

The backtracking line search ensures that fk (Σt (φt)) ≤ fk (Σt), implying that Σt (φt) ∈ Bk. The gradient
of fk is Lipschitz continuous with parameter L = 1 + τm−2 over Bk. Since its Hessian matrix is given by
I ⊗ I + τΣ−1 ⊗Σ−1, we derive

fk (Σt (φt)) ≤ fk (Σt) + 〈∇fk (Σt) ,Σt (φt)−Σt〉+
L

2
‖Σt (φt)−Σt‖2F . (6)

According to the projection theorem, it follows that〈
Σt − φ−1

t ∇fk (Σt)−Σt (φt) ,Σt −Σt (φt)
〉
≤ 0. (7)

Combining with (6), we have

fk (Σt (φt)) ≤ fk (Σt) +

(
L

2
− φt

)
‖Σt (φt)−Σt‖2F . (8)

Given φt ≥ L
3 , it leads to

(
L
2 − φt

)
≤ φt

2 . For any φt ≥ max
(
L
3 ,

1
σ

)
, Σt (φt) can simultaneously satisfy Σt (φt) � 0

and the backtracking line search condition. Then Σt (φt) = Σt+1. Thus the step size in line search has a lower
bound φ−1

t ≥ min
(

3
Lγ , φ0, σ

)
. We set Σt (φt) satisfying this condition as Σt+1.

By induction, Σt ∈ Bk for any t ≥ 0. Sequence {fk (Σt)} is monotonically nonincreasing, and fk (Σt+1) ≤
fk (Σt) until Σt+1 = Σt, indicating that Σt+1 is a stationary point. The stationary point is the unique
minimizer since problem (2) is a strictly convex problem. Therefore, the proposed Algorithm 2 converges to the
optimal solution.

C PROOF OF STATISTICAL THEORY

We begin by introducing some notations. Recall S is the support set of the true covariance matrix Σ?. We
further define two sets T ? and I relative to Σ?, where

T ? =
{
(i, j) | Σ?

ij = 0, i 6= j
}
, (9)

and
I = {(i, i) | i ∈ {1, 2, . . . , d}} . (10)

Based on Assumption 1, we define the set

Lα (Σ) = {(i, j) | |Σij | ≥ αλ} . (11)

We define Tα (Σ) = Lα (Σ) ∪ S, T̄α (Σ) = Tα (Σ) ∪ I, and T̄ c
α (Σ) = T c

α (Σ) \ I.

C.1 Proof of Lemma C.1

Lemma C.1. Let g (Σ) = 1
2 ||Σ − S||2F − τ log det (Σ). Then we have the following inequality:

〈∇g (Σ2)−∇g (Σ1) ,Σ2 −Σ1〉 ≥ ||Σ2 −Σ1||2F. (12)

Proof. By mean value theorem, there exist η ∈ [0, 1], such that

g (Σ2) = g (Σ1) + 〈∇g (Σ1,Σ2 −Σ1)〉+
1

2
vec (Σ2 −Σ1)

> ∇2g (Σt) vec (Σ2 −Σ1) , (13)

where Σt = ηΣ1 + (1− η)Σ2. Note that ∇2g (Σ) = I ⊗ I + τΣ−1
t ⊗Σ−1

t , one has

λmin

(
∇2g (Σ)

)
= λ

(
I ⊗ I + τΣ−1

t ⊗Σ−1
t

)
≥ 1. (14)
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According to
1

2
vec (Σ2 −Σ1)

> ∇2g (Σt) vec (Σ2 −Σ1) ≥
1

2
λmin

(
∇2g (Σ)

)
‖Σ2 −Σ1‖2F ,

we have
g (Σ2) ≥ g (Σ1) + 〈∇g (Σ1) ,Σ2 −Σ1〉+

1

2
‖Σ2 −Σ1‖2F , (15)

and
g (Σ1) ≥ g (Σ2) + 〈∇g (Σ2) ,Σ1 −Σ2〉+

1

2
‖Σ2 −Σ1‖2F . (16)

Combining (15) and (16), we obtain

〈∇g (Σ2)−∇g (Σ1) ,Σ2 −Σ1〉 ≥ ‖Σ2 −Σ1‖2F . (17)

C.2 Proof of Lemma C.2

Lemma C.2. Suppose the event ‖Σ? − S‖max ≤
√
2
2 λ holds, with α = 3, the parameter τ ≤

√
s
n

∥∥∥(Σ?)
−1
∥∥∥−1

F
,

and λ �
√

log d
n . Under Assumptions 1 and 2, if card

(
Tα
(
Σ̃
))

≤ 2s− d holds for some Σ̃, then

∥∥∥Gλ,S

(
Σ̃
)
−Σ?

∥∥∥
F
≤
∥∥∥p′λ (Σ̃S

)∥∥∥
F
+

∥∥∥∥(Σ? − S)T̄α

(
Σ̃

)∥∥∥∥
F

, (18)

and
card

(
Tα
(
Gλ,S

(
Σ̃
)))

≤ 2s− d (19)

where
Gλ,S

(
Σ̃
)
= arg min

Σ′�0,Σ′≥0

1

2
‖Σ′ − S‖2F − τ log detΣ′ +

∑
i6=j

p′λ

(
Σ̃ij

)
Σ′

ij .

Proof. For ease of presentation, we denote Gλ,S

(
Σ̃
)

by Σ. Applying Lemma C.1, and let Σ2 =Σ, Σ1 = Σ?,
then one has

‖Σ −Σ?‖2F ≤
〈
Σ − τΣ−1 −Σ? + τ (Σ?)

−1
,Σ −Σ?

〉
. (20)

Recall the formulation of the problem (2), then we use its Lagrangian function

L (Σ′,Γ ′) =
1

2
‖Σ′ − S‖2F − τ log det (Σ′) +

∑
i 6=j

ΛijΣ
′
ij − 〈Γ ′,Σ′〉 , (21)

where Γ is a Karush-Kuhn-Tucker (KKT) multiplier with Γii = 0 for i ∈ {1, 2, . . . , d}. Let (Σ,Γ ) be the primal
and dual optimal point, then the KKT conditions are as follows:

Σ − S − τΣ−1 +Λ− Γ = 0, (22)

ΣijΓij = 0, Σij ≥ 0, Γij ≥ 0, ∀i 6= j, (23)

Γii = 0, Λij ≥ 0, (24)

By the equation (22), we are able to get Σ − τΣ−1 = Γ −Λ+ S, then (20) can be rewritten as

‖Σ −Σ?‖2F ≤ 〈Γ ,Σ −Σ?〉︸ ︷︷ ︸
term I

+ 〈S −Σ?,Σ −Σ?〉︸ ︷︷ ︸
term II

+ 〈−Λ,Σ −Σ?〉︸ ︷︷ ︸
term III

+τ
〈
(Σ?)

−1
,Σ −Σ?

〉
︸ ︷︷ ︸

term IV

. (25)
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The term I can be bounded by
〈Γ ,Σ −Σ?〉 = −

∑
i 6=j

ΓijΣ
?
ij ≤ 0, (26)

where the equality follows from (23), and the inequality follows from the Γij ≥ 0 and Σ?
ij ≥ 0 ,∀i 6= j.

Consider the event J

‖Σ? − S‖max ≤
√
2

2
λ. (27)

For term II, we separate its support set into parts T̄α
(
Σ̃
)

and T̄ c
α

(
Σ̃
)

. Then one has

〈S −Σ?,Σ −Σ?〉 =
〈
(S −Σ?)T̄ c

α

(
Σ̃

) , (Σ −Σ?)T̄ c
α

(
Σ̃

)〉+

〈
(S −Σ?)T̄α

(
Σ̃

) , (Σ −Σ?)T̄α

(
Σ̃

)〉
≤
〈
(S −Σ?)T̄ c

α

(
Σ̃

) , (Σ −Σ?)T̄ c
α

(
Σ̃

)〉+

∥∥∥∥(Σ? − S)T̄α

(
Σ̃

)∥∥∥∥
F

∥∥∥∥(Σ −Σ?)T̄α

(
Σ̃

)∥∥∥∥
F

.

(28)

In order to bound term III, separating the support set of it into S and T ?, thus we derive

〈−Λ,Σ −Σ?〉 ≤ 〈−ΛS , (Σ −Σ?)S〉+ 〈−ΛT ? , (Σ −Σ?)T ?〉
≤ ‖ΛS‖F ‖(Σ −Σ?)S‖F + 〈−ΛT ? , (Σ −Σ?)T ?〉

≤ ‖ΛS‖F ‖(Σ −Σ?)S‖F +

〈
−ΛT̄ c

α

(
Σ̃

), (Σ −Σ?)T̄ c
α

(
Σ̃

)〉 ,

(29)

where the second inequality can be acquired by the definition of T̄ c
α

(
Σ̃
)

and T ?, we can get T̄ c
α

(
Σ̃
)
⊆ T ? and

combine with Λij ≥ 0.

For the sake of bounding term IV, one has

τ
〈
(Σ?)

−1
,Σ −Σ?

〉
≤ τ

∥∥∥(Σ?)
−1
∥∥∥
F
‖Σ −Σ?‖F . (30)

Noting that for any (i, j) ∈ T̄ c
α

(
Σ̃
)

, Σij ≥ 0, and Λij ≥
√
2
2 λ according to Assumption 1. Combining it with

the event J mentioned above, we can secure〈
(S −Σ?)T̄ c

α

(
Σ̃

) , (Σ −Σ?)T̄ c
α

(
Σ̃

)〉+

〈
−ΛT̄ c

α

(
Σ̃

), (Σ −Σ?)T̄ c
α

(
Σ̃

)〉
=

〈
(S −Σ? −Λ)T̄ c

α

(
Σ̃

) , (Σ −Σ?)T̄ c
α

(
Σ̃

)〉 ≤ 0.

(31)

By bounding the four different terms in (25), we obtain the following result

‖Σ −Σ?‖2F ≤
∥∥∥∥(S −Σ?)T̄α

(
Σ̃

)∥∥∥∥
F

∥∥∥∥(Σ −Σ?)T̄α

(
Σ̃

)∥∥∥∥
F

+ ‖ΛS‖F ‖(Σ −Σ?)S‖F + τ
∥∥∥(Σ?)

−1
∥∥∥
F
‖Σ −Σ?‖F .

(32)

The equality can both be divided by ‖Σ −Σ?‖F, then we have

‖Σ −Σ?‖F ≤
∥∥∥∥(Σ? − S)T̄α

(
Σ̃

)∥∥∥∥
F

+ ‖ΛS‖F + τ
∥∥∥(Σ?)

−1
∥∥∥
F
. (33)

Due to the event J , we know∥∥∥∥(Σ? − S)T̄α

(
Σ̃

)∥∥∥∥
F

≤
√
card

(
T̄α
(
Σ̃
))∥∥∥∥(Σ? − S)T̄α

(
Σ̃

)∥∥∥∥
max

≤
√
card

(
T̄α
(
Σ̃
))√2

2
λ

≤
√
sλ,

(34)
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where the last inequality is from

card
(
T̄α
(
Σ̃
))

= card
(
Tα
(
Σ̃
)
∪ I
)
≤ card

(
Tα
(
Σ̃
))

+ card (I) ≤ 2s− d+ d = 2s. (35)

Since the condition card
(
Tα
(
Σ̃
))

≤ 2s− d is given in Lemma C.2.

According to Assumption 1, it is known that Λij = p′λ

(
Σ̃ij

)
≤ λ,∀i 6= j, together with card (S) ≤ s − d ≤ s.

Thus one has
‖ΛS‖F ≤

√
card (S)λ ≤

√
sλ. (36)

Recall it that τ ≤
√

s
n

∥∥∥(Σ?)
−1
∥∥∥−1

F
and λ �

√
log d
n , then we take

τ ≤
√

s

n

∥∥∥(Σ?)
−1
∥∥∥−1

F
≤ λ

√
s
∥∥∥(Σ?)

−1
∥∥∥−1

F
.

Combining the results above and substituting equations (34) and (36) into equation (33), we obtain

‖Σ −Σ?‖F ≤ 3
√
sλ. (37)

Putting ΛS = p′λ

(
Σ̃S

)
and Σ = Gλ,S

(
Σ̃
)

into (33), we obtain

∥∥∥Gλ,S

(
Σ̃
)
−Σ?

∥∥∥
F
≤
∥∥∥∥(Σ? − S)T̄α

(
Σ̃

)∥∥∥∥
F

+
∥∥∥p′λ (Σ̃S

)∥∥∥
F
+ τ

∥∥∥(Σ?)
−1
∥∥∥
F

. (38)

In next step, we need to prove card (Tα (Σ)) ≤ 2s− d. We separate the set Tα (Σ) from S and Lα (Σ) \ S. For
any (i, j) ∈ Lα (Σ) \ S, one has |Σij | ≥ αλ, then one further obtains

card (Lα (Σ) \ S) ≤
∥∥ΣLα(Σ)\S

∥∥2
F

(αλ)
2

≤
‖Σ −Σ?‖2F

(αλ)
2

≤ s.

(39)

Here, the last inequality follows from (37) and α = 3, which implies that the above condition is established.
Then we obtain

card (Tα (Σ)) = card {(Lα (Σ) \ S) ∪ S}
≤ card (Lα (Σ) \ S) + card (S)
≤ 2s− d,

(40)

completing the proof.

C.3 Proof of Lemma C.3

Lemma C.3. (Lemma D.1 in (Sun et al., 2018)) Let x be a zero mean sub-Gaussian random vector with
covariance matrix Σ? and {xi}ni=1 be a collection of i.i.d samples from x. There exist some constants c1, c2 and
t0 such that for all t with 0 < t < t0, the sample covariance matrix S satisfies the following tail bound

P
(∣∣Σ?

ij − Sij

∣∣ > t
)
≤ c1 exp

(
−c2nt

2
)
. (41)
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C.4 Proof of Lemma C.4

Lemma C.4. Under the same condition in Lemma C.3, if taking λ =
√

6 log d
c2n

�
√

log d
n < t0 , we obtain

P

(
‖Σ? − S‖max ≤

√
2

2
λ

)
≥ 1− c1

d
. (42)

Proof. Applying Lemma C.3 and union bound, for any
√
2
2 λ such that 0 < λ < t0, then the following result holds

P

(
‖Σ? − S‖max >

√
2

2
λ

)
≤c1d

2 exp

(
−c2nλ

2

2

)
=c1 exp

(
−c2nλ

2

2
+ 2 log d

)
.

(43)

For the n is sufficiently large such that n ≥ 4 log d
c2t20

and λ =
√

6 log d
c2n

�
√

log d
n < t0, there exists

P

(
‖Σ? − S‖max ≤

√
2

2
λ

)
≥ 1− c1 exp

(
−c2nλ

2

2
+ 2 log d

)
= 1− c1

d
. (44)

C.5 Proof of Lemma C.5

Lemma C.5. Under the conditions that exist in the Lemma C.3, the following result holds

P
(
‖(Σ? − S)S∪I‖F .

√
s

n

)
≥ 1− c1

s
. (45)

Proof. Applying Lemma C.3 and union bound, for any M such that 0 < M
√

1
n < t0, one has

P

(
‖(Σ? − S)S∪I‖max > M

√
1

n

)
≤ c1card (S) exp

(
−c2M

2
)
≤ c1 exp

(
−c2M

2 + log s
)
. (46)

where the second inequality is obtained by card (S ∪ I) ≤ s. By taking M such that
√

2 log s
c2

< M < t0
√
n, we

have

P

(
‖(Σ? − S)S∪I‖max ≤ M

√
1

n

)
≥ 1− c1 exp

(
−c2M

2 + log s
)
≥ 1− c1

s
. (47)

Then, applying the following inequality

‖(Σ? − S)S∪I‖F ≤
√
s ‖(Σ? − S)S∪I‖max

,

we can obtain

P
(
‖(Σ? − S)S∪I‖F ≤ M

√
s

n

)
≥ 1− c1

s
, (48)

completing the proof.
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C.6 Proof of Theorem 2

Given Σk = Gλ,S

(
Σk−1

)
for k ≥ 2 and p′λ (0) = λ in Assumption 1, we can write Σ1 = Gλ,S

(
Σ0
)
, where

Σ
(0)
ij = 0 for any i 6= j, and card

(
Tα
(
Σ0
))

≤ 2s − d. Following from Lemma C.2, we can further obtain
card

(
Tα
(
Σ1
))

≤ 2s− d.

By induction, we have for any k ≥ 1

card
(
Tα

(
Σk
))

≤ 2s− d. (49)

To simplify notation, we denote Tα
(
Σk
)

by T k
α and T̄α

(
Σk
)

by T̄ k
α .

Due to (38), we get ∥∥Σk −Σ?
∥∥
F
≤
∥∥∥(Σ? − S)T̄ k−1

α

∥∥∥
F
+
∥∥∥p′λ (Σ(k−1)

S

)∥∥∥
F
+ τ

∥∥∥(Σ?)
−1
∥∥∥
F

. (50)

Let ρk−1
1 =

∥∥p′λ (Σk−1
S
)∥∥

F
, ρk−1

2 =
∥∥∥(Σ? − S)T̄ k−1

α

∥∥∥
F
+ τ

∥∥∥(Σ?)
−1
∥∥∥
F

then one has:

∥∥Σk −Σ?
∥∥
F
≤ ρk−1

1 + ρk−1
2 , (51)

The term ρk−1
1 can be bounded by

∥∥Σk−1 −Σ?
∥∥
F

, for any (i, j) ∈ S, if
∣∣Σ?

ij −Σk−1
ij

∣∣ ≥ αλ, then we have

0 ≤ p′λ
(
Σk−1

ij

)
≤ λ ≤ λ

αλ

∣∣Σ?
ij −Σk−1

ij

∣∣ = 1

α

∣∣Σ?
ij −Σk−1

ij

∣∣ , (52)

where the first two inequalities are from Assumption 1.

If
∣∣Σ?

ij −Σk−1
ij

∣∣ ≤ αλ, then we have

0 ≤ p′λ
(
Σk−1

ij

)
≤ p′λ

(∣∣Σ?
ij

∣∣− αλ
)
= 0, (53)

where the second inequality follows from Assumption 2 that min
(i,j)∈S

|Σ?
ij | ≥ (α+ γ)λ and p′λ (x) = 0 for x ≥ γλ.

As a result, we can obtain

δk−1
1 ≤ λ

αλ

∥∥(Σk−1 −Σ?
)
S

∥∥
F
≤ 1

α

∥∥Σk−1 −Σ?
∥∥
F
. (54)

In order to to bound ρk−1
2 , we separate T̄ k−1

α into Lk−1
α \ S? and S ∪ I. The term

∥∥∥(Σ? − S)Lk−1
α \S

∥∥∥ can be
bounded as following ∥∥∥(Σ? − S)Lk−1

α \S

∥∥∥
F
≤
√∣∣Lk−1

α \ S
∣∣ ∥∥∥(Σ? − S)Lk−1

α \S

∥∥∥
max

≤
√
2λ

2αλ

∥∥Σk−1 −Σ?
∥∥
F

=

√
2

2α

∥∥Σk−1 −Σ?
∥∥
F
,

(55)

where the last inequality is from
∥∥∥(Σ? − S)Lk−1

α \S

∥∥∥
max

≤
√
2
2 λ, and

√
card

(
Lk−1
α \ S

)
≤

∥∥∥∥Σk−1

Lk−1
α \S

∥∥∥∥
F

α . The latter
is according to the definition of Lk−1

α .

So the ρk−1
2 is bounded as following

ρk−1
2 ≤

∥∥∥(Σ? − S)Lk−1
α \S

∥∥∥
F
+ ‖(Σ? − S)S∪I‖F + τ

∥∥∥(Σ?)
−1
∥∥∥
F

≤
√
2

2α

∥∥Σk−1 −Σ?
∥∥
F
+ ‖(Σ? − S)S∪I‖F + τ

∥∥∥(Σ?)
−1
∥∥∥
F
.

(56)
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Integrating (54) and (56) into (50), we have

∥∥Σk −Σ?
∥∥
F
≤
(
2 +

√
2
)

2α

∥∥Σk−1 −Σ?
∥∥
F
+ ‖(Σ? − S)S∪I‖F + τ

∥∥∥(Σ?)
−1
∥∥∥
F

. (57)

Given α = 3, by setting δ = 2+
√
2

6 , dk =
∥∥Σk −Σ?

∥∥
F

and V = ‖(Σ? − S)S∪I‖F + τ
∥∥∥(Σ?)

−1
∥∥∥
F

, we obtain

dk ≤ V + δdk−1, ∀k ≥ 1. (58)

Owing to the fact of δ ∈ (0, 1), we have
dk ≤ 1

1− δ
V + δk−1d1. (59)

i.e., ∥∥Σk −Σ?
∥∥
F
≤ δk−1

∥∥Σ1 −Σ?
∥∥
F︸ ︷︷ ︸

optimization error

+
1

1− δ

(
‖(Σ? − S)S∪I‖F + τ

∥∥∥(Σ?)
−1
∥∥∥
F

)
︸ ︷︷ ︸

statistical error

.
(60)

C.7 Proof of Corollary 3

In the initial stage, we set Σ0 = I. This implies card
(
Tα
(
Σ0
))

≤ 2s − d. According to Lemma C.2 and
d1 ≤ 3λ

√
s, we can apply the inequality (37) and set Σ1 = Σ, we can have the following∥∥Σ1 −Σ?

∥∥
F
≤ 3λ

√
s. (61)

Note λ �
√

log d
n , we obtain ∥∥Σ1 −Σ?

∥∥
F
.

√
s log d

n
. (62)

C.8 Proof of Corollary 4

Note τ ≤
√

s
n

∥∥∥(Σ?)
−1
∥∥∥−1

F
, together with Lemma C.5 providing that ‖(Σ? − S)S∪I‖F .

√
s
n holds with high

probability, it shows that V .
√

s
n holds with high probability, too.

Recall d1 ≤ 3λ
√
s and plug this into (60), we can have∥∥Σk −Σ?

∥∥
F
≤ 1

1− δ
V + δk−13λ

√
s. (63)

If K ≥ 1 +
log

(
λ
√
n
)

log δ−1 & log (λ
√
n) & log log d, then we have

δk−1λ
√
s ≤ 1

λ
√
n
λ
√
s ≤

√
s

n
. (64)

Combing above results will yield
∥∥ΣK −Σ?

∥∥
F
.
√

s
n holds for high probability, which makes our formulation

exhibit oracle property.


